Evolution of Metabolic Diversity Laboratory, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), CINVESTAV-IPN, Km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, C.P. 36822, México.
Protein Sci. 2010 Mar;19(3):535-43. doi: 10.1002/pro.331.
A good model to experimentally explore evolutionary hypothesis related to enzyme function is the ancient-like dual-substrate (beta alpha)(8) phosphoribosyl isomerase A (PriA), which takes part in both histidine and tryptophan biosynthesis in Streptomyces coelicolor and related organisms. In this study, we determined the Michaelis-Menten enzyme kinetics for both isomerase activities in wild-type PriA from S. coelicolor and in selected single-residue monofunctional mutants, identified after Escherichia coli in vivo complementation experiments. Structural and functional analyses of a hitherto unnoticed residue contained on the functionally important beta --> alpha loop 5, namely, Arg(139), which was postulated on structural grounds to be important for the dual-substrate specificity of PriA, is presented for the first time. Indeed, enzyme kinetics analyses done on the mutant variants PriA_Ser(81)Thr and PriA_Arg(139)Asn showed that these residues, which are contained on beta --> alpha loops and in close proximity to the N-terminal phosphate-binding site, are essential solely for the phosphoribosyl anthranilate isomerase activity of PriA. Moreover, analysis of the X-ray crystallographic structure of PriA_Arg(139)Asn elucidated at 1.95 A herein strongly implicates the occurrence of conformational changes in this beta --> alpha loop as a major structural feature related to the evolution of the dual-substrate specificity of PriA. It is suggested that PriA has evolved by tuning a fine energetic balance that allows the sufficient degree of structural flexibility needed for accommodating two topologically dissimilar substrates--within a bifunctional and thus highly constrained active site--without compromising its structural stability.
一个用于实验探索与酶功能相关的进化假说的良好模型是古老的双底物(βα)(8)磷酸核糖异构酶 A(PriA),它参与链霉菌属和相关生物的组氨酸和色氨酸生物合成。在这项研究中,我们确定了来自链霉菌属的野生型 PriA 及其在体内大肠杆菌互补实验后鉴定的选定单残基单功能突变体的两种异构酶活性的米氏酶动力学。结构和功能分析揭示了迄今为止在功能重要的β->α环 5 中发现的一个未被注意的残基Arg(139),该残基基于结构被推测对 PriA 的双底物特异性很重要,这是首次提出。事实上,对突变体变体 PriA_Ser(81)Thr 和 PriA_Arg(139)Asn 的酶动力学分析表明,这些残基位于β->α环中,并且与 N 端磷酸结合位点接近,对于 PriA 的磷酸核糖邻氨基苯甲酸异构酶活性是必不可少的。此外,本文 1.95Å 解析的 PriA_Arg(139)Asn 的 X 射线晶体结构分析强烈暗示了该β->α环中构象变化的发生是与 PriA 的双底物特异性进化相关的主要结构特征。有人提出,PriA 通过调整精细的能量平衡来进化,这种平衡允许在不损害其结构稳定性的情况下,在双功能且因此高度受限的活性位点内,容纳两个拓扑上不同的底物所需的足够程度的结构灵活性。