Söderholm Annika, Guo Xiaohu, Newton Matilda S, Evans Gary B, Näsvall Joakim, Patrick Wayne M, Selmer Maria
From the Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 751 24 Uppsala, Sweden.
the Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
J Biol Chem. 2015 Oct 9;290(41):24657-68. doi: 10.1074/jbc.M115.678086. Epub 2015 Aug 20.
HisA is a (βα)8 barrel enzyme that catalyzes the Amadori rearrangement of N'-[(5'-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) to N'-((5'-phosphoribulosyl) formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in the histidine biosynthesis pathway, and it is a paradigm for the study of enzyme evolution. Still, its exact catalytic mechanism has remained unclear. Here, we present crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and of mutants D7N and D7N/D176A in complex with two different conformations of the labile substrate ProFAR, which was structurally visualized for the first time. Site-directed mutagenesis and kinetics demonstrated that Asp-7 acts as the catalytic base, and Asp-176 acts as the catalytic acid. The SeHisA structures with ProFAR display two different states of the long loops on the catalytic face of the structure and demonstrate that initial binding of ProFAR to the active site is independent of loop interactions. When the long loops enclose the substrate, ProFAR adopts an extended conformation where its non-reacting half is in a product-like conformation. This change is associated with shifts in a hydrogen bond network including His-47, Asp-129, Thr-171, and Ser-202, all shown to be functionally important. The closed conformation structure is highly similar to the bifunctional HisA homologue PriA in complex with PRFAR, thus proving that structure and mechanism are conserved between HisA and PriA. This study clarifies the mechanistic cycle of HisA and provides a striking example of how an enzyme and its substrate can undergo coordinated conformational changes before catalysis.
HisA是一种(βα)8桶状酶,在组氨酸生物合成途径中催化N'-[(5'-磷酸核糖基)甲脒基]-5-氨基咪唑-4-甲酰胺核糖核苷酸(ProFAR)重排为N'-((5'-磷酸核酮糖基)甲脒基)-5-氨基咪唑-4-甲酰胺核糖核苷酸(PRFAR),它是酶进化研究的典范。然而,其确切的催化机制仍不清楚。在此,我们展示了野生型肠炎沙门氏菌HisA(SeHisA)的无配体状态晶体结构,以及与不稳定底物ProFAR的两种不同构象结合的突变体D7N和D7N/D176A的晶体结构,ProFAR的结构首次得以可视化。定点诱变和动力学研究表明,Asp-7作为催化碱,Asp-176作为催化酸。与ProFAR结合的SeHisA结构在结构的催化面上显示出长环的两种不同状态,并表明ProFAR与活性位点的初始结合不依赖于环相互作用。当长环包围底物时,ProFAR采取伸展构象,其未反应的一半处于类似产物的构象。这种变化与包括His-47、Asp-129、Thr-171和Ser-202在内的氢键网络的变化相关,所有这些都显示出功能上的重要性。封闭构象结构与与PRFAR结合的双功能HisA同源物PriA高度相似,从而证明HisA和PriA之间的结构和机制是保守的。这项研究阐明了HisA的作用机制循环,并提供了一个显著的例子,说明酶及其底物在催化之前如何经历协同的构象变化。