Suppr超能文献

(βα)8桶状酶中的两步配体结合:底物结合结构为HisA催化循环提供新线索

Two-step Ligand Binding in a (βα)8 Barrel Enzyme: SUBSTRATE-BOUND STRUCTURES SHED NEW LIGHT ON THE CATALYTIC CYCLE OF HisA.

作者信息

Söderholm Annika, Guo Xiaohu, Newton Matilda S, Evans Gary B, Näsvall Joakim, Patrick Wayne M, Selmer Maria

机构信息

From the Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, 751 24 Uppsala, Sweden.

the Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

出版信息

J Biol Chem. 2015 Oct 9;290(41):24657-68. doi: 10.1074/jbc.M115.678086. Epub 2015 Aug 20.

Abstract

HisA is a (βα)8 barrel enzyme that catalyzes the Amadori rearrangement of N'-[(5'-phosphoribosyl)formimino]-5-aminoimidazole-4-carboxamide ribonucleotide (ProFAR) to N'-((5'-phosphoribulosyl) formimino)-5-aminoimidazole-4-carboxamide-ribonucleotide (PRFAR) in the histidine biosynthesis pathway, and it is a paradigm for the study of enzyme evolution. Still, its exact catalytic mechanism has remained unclear. Here, we present crystal structures of wild type Salmonella enterica HisA (SeHisA) in its apo-state and of mutants D7N and D7N/D176A in complex with two different conformations of the labile substrate ProFAR, which was structurally visualized for the first time. Site-directed mutagenesis and kinetics demonstrated that Asp-7 acts as the catalytic base, and Asp-176 acts as the catalytic acid. The SeHisA structures with ProFAR display two different states of the long loops on the catalytic face of the structure and demonstrate that initial binding of ProFAR to the active site is independent of loop interactions. When the long loops enclose the substrate, ProFAR adopts an extended conformation where its non-reacting half is in a product-like conformation. This change is associated with shifts in a hydrogen bond network including His-47, Asp-129, Thr-171, and Ser-202, all shown to be functionally important. The closed conformation structure is highly similar to the bifunctional HisA homologue PriA in complex with PRFAR, thus proving that structure and mechanism are conserved between HisA and PriA. This study clarifies the mechanistic cycle of HisA and provides a striking example of how an enzyme and its substrate can undergo coordinated conformational changes before catalysis.

摘要

HisA是一种(βα)8桶状酶,在组氨酸生物合成途径中催化N'-[(5'-磷酸核糖基)甲脒基]-5-氨基咪唑-4-甲酰胺核糖核苷酸(ProFAR)重排为N'-((5'-磷酸核酮糖基)甲脒基)-5-氨基咪唑-4-甲酰胺核糖核苷酸(PRFAR),它是酶进化研究的典范。然而,其确切的催化机制仍不清楚。在此,我们展示了野生型肠炎沙门氏菌HisA(SeHisA)的无配体状态晶体结构,以及与不稳定底物ProFAR的两种不同构象结合的突变体D7N和D7N/D176A的晶体结构,ProFAR的结构首次得以可视化。定点诱变和动力学研究表明,Asp-7作为催化碱,Asp-176作为催化酸。与ProFAR结合的SeHisA结构在结构的催化面上显示出长环的两种不同状态,并表明ProFAR与活性位点的初始结合不依赖于环相互作用。当长环包围底物时,ProFAR采取伸展构象,其未反应的一半处于类似产物的构象。这种变化与包括His-47、Asp-129、Thr-171和Ser-202在内的氢键网络的变化相关,所有这些都显示出功能上的重要性。封闭构象结构与与PRFAR结合的双功能HisA同源物PriA高度相似,从而证明HisA和PriA之间的结构和机制是保守的。这项研究阐明了HisA的作用机制循环,并提供了一个显著的例子,说明酶及其底物在催化之前如何经历协同的构象变化。

相似文献

1
Two-step Ligand Binding in a (βα)8 Barrel Enzyme: SUBSTRATE-BOUND STRUCTURES SHED NEW LIGHT ON THE CATALYTIC CYCLE OF HisA.
J Biol Chem. 2015 Oct 9;290(41):24657-68. doi: 10.1074/jbc.M115.678086. Epub 2015 Aug 20.
2
Directed evolution of a (beta alpha)8-barrel enzyme to catalyze related reactions in two different metabolic pathways.
Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9925-30. doi: 10.1073/pnas.160255397.
4
Mimicking enzyme evolution by generating new (betaalpha)8-barrels from (betaalpha)4-half-barrels.
Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16448-53. doi: 10.1073/pnas.0405832101. Epub 2004 Nov 11.
5
Crystal structure of the yeast His6 enzyme suggests a reaction mechanism.
Protein Sci. 2006 Jun;15(6):1516-21. doi: 10.1110/ps.062144406.
6
Simulations reveal the key role of Arg15 in the promiscuous activity in the HisA enzyme.
Org Biomol Chem. 2021 Dec 15;19(48):10652-10661. doi: 10.1039/d1ob02029c.
8
Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer.
Mol Biol Evol. 2013 Sep;30(9):2024-34. doi: 10.1093/molbev/mst115. Epub 2013 Jun 25.
9
Conformational Modulation of a Mobile Loop Controls Catalysis in the (βα)-Barrel Enzyme of Histidine Biosynthesis HisF.
JACS Au. 2024 Aug 15;4(8):3258-3276. doi: 10.1021/jacsau.4c00558. eCollection 2024 Aug 26.

引用本文的文献

1
Conformational Modulation of a Mobile Loop Controls Catalysis in the (βα)-Barrel Enzyme of Histidine Biosynthesis HisF.
JACS Au. 2024 Aug 15;4(8):3258-3276. doi: 10.1021/jacsau.4c00558. eCollection 2024 Aug 26.
3
Loop dynamics and the evolution of enzyme activity.
Nat Rev Chem. 2023 Aug;7(8):536-547. doi: 10.1038/s41570-023-00495-w. Epub 2023 May 24.
5
Mutational Pathways and Trade-Offs Between HisA and TrpF Functions: Implications for Evolution via Gene Duplication and Divergence.
Front Microbiol. 2020 Oct 14;11:588235. doi: 10.3389/fmicb.2020.588235. eCollection 2020.
6
Identification and Analysis of Natural Building Blocks for Evolution-Guided Fragment-Based Protein Design.
J Mol Biol. 2020 Jun 12;432(13):3898-3914. doi: 10.1016/j.jmb.2020.04.013. Epub 2020 Apr 21.
7
Evolution of new enzymes by gene duplication and divergence.
FEBS J. 2020 Apr;287(7):1262-1283. doi: 10.1111/febs.15299.
9
Structural and functional innovations in the real-time evolution of new (βα) barrel enzymes.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4727-4732. doi: 10.1073/pnas.1618552114. Epub 2017 Apr 17.
10
The Amadori Rearrangement for Carbohydrate Conjugation: Scope and Limitations.
European J Org Chem. 2016 Sep;2016(25):4328-4337. doi: 10.1002/ejoc.201600458. Epub 2016 Jun 27.

本文引用的文献

1
PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions.
J Chem Theory Comput. 2011 Feb 8;7(2):525-37. doi: 10.1021/ct100578z. Epub 2011 Jan 6.
3
Evolution of substrate specificity in a recipient's enzyme following horizontal gene transfer.
Mol Biol Evol. 2013 Sep;30(9):2024-34. doi: 10.1093/molbev/mst115. Epub 2013 Jun 25.
4
A sugar isomerization reaction established on various (βα)₈-barrel scaffolds is based on substrate-assisted catalysis.
Protein Eng Des Sel. 2012 Nov;25(11):751-60. doi: 10.1093/protein/gzs080. Epub 2012 Oct 28.
5
Real-time evolution of new genes by innovation, amplification, and divergence.
Science. 2012 Oct 19;338(6105):384-7. doi: 10.1126/science.1226521.
6
Towards automated crystallographic structure refinement with phenix.refine.
Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):352-67. doi: 10.1107/S0907444912001308. Epub 2012 Mar 16.
7
The structure of a truncated phosphoribosylanthranilate isomerase suggests a unified model for evolution of the (βα)8 barrel fold.
J Mol Biol. 2011 Apr 29;408(2):291-303. doi: 10.1016/j.jmb.2011.02.048. Epub 2011 Feb 25.
8
Bisubstrate specificity in histidine/tryptophan biosynthesis isomerase from Mycobacterium tuberculosis by active site metamorphosis.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3554-9. doi: 10.1073/pnas.1015996108. Epub 2011 Feb 14.
9
Dali server: conservation mapping in 3D.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W545-9. doi: 10.1093/nar/gkq366. Epub 2010 May 10.
10
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验