文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

AC133 表位在癌症干细胞分化时丢失,但 CD133 蛋白不会。

The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation.

机构信息

Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, and Department of Pathology, Academic Medical Center, 1105AZ Amsterdam, the Netherlands.

出版信息

Cancer Res. 2010 Jan 15;70(2):719-29. doi: 10.1158/0008-5472.CAN-09-1820. Epub 2010 Jan 12.


DOI:10.1158/0008-5472.CAN-09-1820
PMID:20068153
Abstract

Colon cancer stem cells (CSC) can be identified with AC133, an antibody that detects an epitope on CD133. However, recent evidence suggests that expression of CD133 is not restricted to CSCs, but is also expressed on differentiated tumor cells. Intriguingly, we observed that detection of the AC133 epitope on the cell surface decreased upon differentiation of CSC in a manner that correlated with loss of clonogenicity. However, this event did not coincide with a change in CD133 promoter activity, mRNA, splice variant, protein expression, or even cell surface expression of CD133. In contrast, we noted that with CSC differentiation, a change occured in CD133 glycosylation. Thus, AC133 may detect a glycosylated epitope, or differential glycosylation may cause CD133 to be retained inside the cell. We found that AC133 could effectively detect CD133 glycosylation mutants or bacterially expressed unglycosylated CD133. Moreover, cell surface biotinylation experiments revealed that differentially glycosylated CD133 could be detected on the membrane of differentiated tumor cells. Taken together, our results argue that CD133 is a cell surface molecule that is expressed on both CSC and differentiated tumor cells, but is probably differentially folded as a result of differential glycosylation to mask specific epitopes. In summary, we conclude that AC133 can be used to detect cancer stem cells, but that results from the use of this antibody should be interpreted with caution.

摘要

结肠癌细胞干细胞 (CSC) 可以通过 AC133 鉴定,AC133 是一种识别 CD133 上表位的抗体。然而,最近的证据表明,CD133 的表达不仅局限于 CSC,也表达于分化的肿瘤细胞。有趣的是,我们观察到 CSC 分化时,细胞表面上 AC133 表位的检测减少,与克隆形成能力的丧失相关。然而,这一事件与 CD133 启动子活性、mRNA、剪接变体、蛋白表达甚至 CD133 细胞表面表达的变化并不一致。相比之下,我们注意到随着 CSC 分化,CD133 发生了糖基化变化。因此,AC133 可能检测到糖基化的表位,或者差异糖基化可能导致 CD133 被保留在细胞内。我们发现 AC133 可以有效地检测到 CD133 糖基化突变体或细菌表达的未糖基化 CD133。此外,细胞表面生物素化实验表明,差异糖基化的 CD133 可以在分化肿瘤细胞的膜上检测到。总之,我们的结果表明 CD133 是一种在 CSC 和分化的肿瘤细胞上都表达的细胞表面分子,但由于差异糖基化导致特定表位被掩盖,可能会以不同的构象存在。总之,我们得出结论,AC133 可用于检测癌症干细胞,但使用该抗体的结果应谨慎解释。

相似文献

[1]
The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation.

Cancer Res. 2010-1-12

[2]
Post-translational modulation of CD133 expression during sodium butyrate-induced differentiation of HT29 human colon cancer cells: implications for its detection.

J Cell Physiol. 2010-7

[3]
CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells.

PLoS One. 2015-6-18

[4]
Phenotypic subpopulations of metastatic colon cancer stem cells: genomic analysis.

Cancer Genomics Proteomics. 2009

[5]
Insight into the complex regulation of CD133 in glioma.

Int J Cancer. 2011-2-1

[6]
RNA aptamers targeting cancer stem cell marker CD133.

Cancer Lett. 2012-11-27

[7]
microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb.

Int J Oncol. 2011-10-24

[8]
Expression and regulation of AC133 and CD133 in glioblastoma.

Glia. 2011-9-7

[9]
CD133 glycosylation is enhanced by hypoxia in cultured glioma stem cells.

Int J Oncol. 2013-1-22

[10]
Glioblastoma cells negative for the anti-CD133 antibody AC133 express a truncated variant of the CD133 protein.

Int J Mol Med. 2010-6

引用本文的文献

[1]
Bioinformatics tools and experimental analysis combination for production of specific scFv against CD133.

Naunyn Schmiedebergs Arch Pharmacol. 2025-2-27

[2]
Combinational Inhibition of MEK and AKT Synergistically Induces Melanoma Stem Cell Apoptosis and Blocks NRAS Tumor Growth.

Cells. 2025-2-10

[3]
Unveiling the impact of CD133 on cell cycle regulation in radio- and chemo-resistance of cancer stem cells.

Front Public Health. 2025-2-6

[4]
Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133?

J Nanobiotechnology. 2025-1-29

[5]
Deciphering the Complexities of Adult Human Steady State and Stress-Induced Hematopoiesis: Progress and Challenges.

Int J Mol Sci. 2025-1-14

[6]
Protocol for sorting cancer stem cells using a combination of anti-CD133 antibody and lectin cyanovirin-N.

STAR Protoc. 2024-12-20

[7]
Metabolomics-driven approaches for identifying therapeutic targets in drug discovery.

MedComm (2020). 2024-11-11

[8]
Natural killer cell engagers: From bi-specific to tri-specific and tetra-specific engagers for enhanced cancer immunotherapy.

Clin Transl Med. 2024-11

[9]
Interconnection of CD133 Stem Cell Marker with Autophagy and Apoptosis in Colorectal Cancer.

Int J Mol Sci. 2024-10-18

[10]
Comparison of methods for cancer stem cell detection in prognosis of early stages NSCLC.

Br J Cancer. 2024-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索