Suppr超能文献

多倾向评分作为比较超过两个治疗组的偏倚控制:来自心理健康案例研究的介绍。

The multiple propensity score as control for bias in the comparison of more than two treatment arms: an introduction from a case study in mental health.

机构信息

Department of Methodology and Statistics, Tilburg University, Tilburg, The Netherlands.

出版信息

Med Care. 2010 Feb;48(2):166-74. doi: 10.1097/MLR.0b013e3181c1328f.

Abstract

BACKGROUND AND OBJECTIVE

The propensity score method (PS) has proven to be an effective tool to reduce bias in nonrandomized studies, especially when the number of (potential) confounders is large and dimensionality problems arise. The PS method introduced by Rosenbaum and Rubin is described in detail for studies with 2 treatment options. Since in clinical practice we are often interested in the comparison of multiple interventions, there was a need to extend the PS method to multiple treatments. It has been shown that in theory a multiple PS method is possible. So far, its practical application is rare and a practical introduction lacking.

METHODS

A practical guideline to illustrate the use of the multiple PS method is provided with data from a mental health study. The multiple PS is estimated with a multinomial logistic regression analysis. The multiple PS is the probability of assignment to each treatment category. Subsequently, to estimate the treatment effects while controlling for initial differences, the multiple PSs, calculated for each treatment category, are included as extra predictors in the regression analysis.

RESULTS

With the multiple PS method, balance was achieved in all relevant pretreatment variables. The corrected estimated treatment effects were somewhat different from the results without control for initial differences.

CONCLUSIONS

Our results indicate that the multiple PS method is a feasible method to adjust for observed pretreatment differences in nonrandomized studies where the number of pretreatment differences is large and multiple treatments are compared.

摘要

背景和目的

倾向评分法(PS)已被证明是减少非随机研究偏倚的有效工具,尤其是在潜在混杂因素数量较多且存在维度问题时。Rosenbaum 和 Rubin 介绍的 PS 方法详细描述了具有 2 种治疗选择的研究。由于在临床实践中,我们通常对多种干预措施的比较感兴趣,因此需要将 PS 方法扩展到多种治疗方法。理论上已经证明了多 PS 方法是可能的。到目前为止,其实践应用很少,也缺乏实践介绍。

方法

本文提供了一个实用指南,说明了如何使用多 PS 方法,该指南使用了一项心理健康研究的数据。使用多项逻辑回归分析来估计多 PS。多 PS 是分配给每个治疗类别的概率。随后,为了在控制初始差异的情况下估计治疗效果,将为每个治疗类别计算的多 PS 作为额外的预测因子包含在回归分析中。

结果

使用多 PS 方法,所有相关的预处理变量都达到了平衡。校正后的估计治疗效果与未控制初始差异的结果略有不同。

结论

我们的结果表明,在非随机研究中,当预处理差异数量较大且比较多种治疗方法时,多 PS 方法是一种可行的方法,可以调整观察到的预处理差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验