Suppr超能文献

shotgun 蛋白质组学中错误发现率估计的经验方法

Empirical approach to false discovery rate estimation in shotgun proteomics.

机构信息

Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, Leninskii pr. 38, Bld.2, Moscow 119334, Russia.

出版信息

Rapid Commun Mass Spectrom. 2010 Feb;24(4):454-62. doi: 10.1002/rcm.4417.

Abstract

Estimation of false discovery rate (FDR) for identified peptides is an important step in large-scale proteomic studies. We introduced an empirical approach to the problem that is based on the FDR-like functions of sets of peptide spectral matches (PSMs). These functions have close values for equal-sized sets with the same FDR and depend monotonically on the FDR of a set. We have found three of them, based on three complementary sources of data: chromatography, mass spectrometry, and sequences of identified peptides. Using a calibration on a set of putative correct PSMs these functions were converted into the FDR scale. The approach was tested on a set of approximately 2800 PSMs obtained from rat kidney tissue. The estimates based on all three data sources were rather consistent with each other as well as with one made using the target-decoy strategy.

摘要

鉴定肽的错误发现率(FDR)的估计是大规模蛋白质组学研究中的重要步骤。我们提出了一种基于肽谱匹配(PSM)集的 FDR 样函数的经验方法。这些函数对于具有相同 FDR 的相同大小的集合具有接近的值,并且取决于集合的 FDR 单调递增。我们基于三种互补的数据来源:色谱、质谱和鉴定肽的序列,找到了三种这样的函数。使用一组假定正确的 PSM 的校准,这些函数被转换为 FDR 标度。该方法在大约 2800 个从大鼠肾脏组织获得的 PSM 上进行了测试。基于所有三个数据源的估计值彼此之间以及与使用目标诱饵策略的估计值相当一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验