Suppr超能文献

评估鸟枪法蛋白质组学实验中肽段鉴定结果的统计学显著性。

Estimating the statistical significance of peptide identifications from shotgun proteomics experiments.

作者信息

Higgs Richard E, Knierman Michael D, Freeman Angela Bonner, Gelbert Lawrence M, Patil Sandeep T, Hale John E

机构信息

Lilly Research Laboratories, MS 1533, Lilly Corporate Center, Indianapolis, Indiana 46285, USA.

出版信息

J Proteome Res. 2007 May;6(5):1758-67. doi: 10.1021/pr0605320. Epub 2007 Mar 31.

Abstract

We present a wrapper-based approach to estimate and control the false discovery rate for peptide identifications using the outputs from multiple commercially available MS/MS search engines. Features of the approach include the flexibility to combine output from multiple search engines with sequence and spectral derived features in a flexible classification model to produce a score associated with correct peptide identifications. This classification model score from a reversed database search is taken as the null distribution for estimating p-values and false discovery rates using a simple and established statistical procedure. Results from 10 analyses of rat sera on an LTQ-FT mass spectrometer indicate that the method is well calibrated for controlling the proportion of false positives in a set of reported peptide identifications while correctly identifying more peptides than rule-based methods using one search engine alone.

摘要

我们提出了一种基于包装器的方法,利用多个商用MS/MS搜索引擎的输出结果来估计和控制肽段鉴定中的错误发现率。该方法的特点包括灵活性,即可以在灵活的分类模型中,将多个搜索引擎的输出结果与序列和光谱衍生特征相结合,以生成与正确肽段鉴定相关的分数。通过反向数据库搜索得到的这个分类模型分数,被用作空分布,以便使用简单且既定的统计程序来估计p值和错误发现率。在LTQ-FT质谱仪上对大鼠血清进行的10次分析结果表明,该方法在控制一组报告的肽段鉴定中的假阳性比例方面校准良好,同时与仅使用一个搜索引擎的基于规则的方法相比,能够正确鉴定出更多的肽段。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验