Suppr超能文献

氟喹诺酮类抗生素对光合作用的抑制作用。

Inhibition of photosynthesis by a fluoroquinolone antibiotic.

机构信息

Molecular Toxicology Group, Department of Plant and Microbial Biology, and Division of Ecosystem Sciences, University of California at Berkeley, Berkeley, California 94720, USA.

出版信息

Environ Sci Technol. 2010 Feb 15;44(4):1444-50. doi: 10.1021/es902665n.

Abstract

Recent microcosm studies have revealed that fluoroquinolone (FQ) antibiotics can have ecotoxicological impacts on photosynthetic organisms, but little is known about the mechanisms of toxicity. We employed a combination of modeling and experimental techniques to explore how FQs may have these unintended secondary toxic effects. Structure-activity analysis revealed that the quinolone ring and secondary amino group typically present in FQ antibiotics may mediate their action as quinone site inhibitors in photosystem II (PS-II), a key enzyme in photosynthetic electron transport. Follow-up molecular simulations involving nalidixic acid (Naldx), a nonfluorinated quinolone with a demonstrated adverse impact on photosynthesis, and ciprofloxacin (Cipro), the most commonly used FQ antibiotic, showed that both may interfere stereochemically with the catalytic activity of reaction center II (RC-II), the pheophytin-quinone-type center present in PS-II. Naldx can occupy the same binding site as the secondary quinone acceptor (Q(B)) in RC-II and interact with amino acid residues required for the enzymatic reduction of Q(B). Cipro binds in a somewhat different manner, suggesting a different mechanism of interference. Fluorescence induction kinetics, a common method of screening for PS-II inhibition, recorded for photoexcited thylakoid membranes isolated from Cipro-exposed spinach chloroplasts, indicated that Cipro interferes with the transfer of energy from excited antenna chlorophyll molecules to the reaction center in RC-II ([Cipro] >or= 5 microM in vitro and >or=10 microM in vivo) and thus delays the kinetics of photoreduction of the primary quinone acceptor (Q(A); [Cipro] >or= 0.6 microM in vitro). Spinach plants exposed to Cipro exhibited severe growth inhibition characterized by a decrease in both the synthesis of leaves and growth of the roots ([Cipro] >or= 0.5 microM in vivo). Our results thus demonstrate that Cipro and related FQ antibiotics may interfere with photosynthetic pathways, in addition to causing morphological deformities in higher plants.

摘要

最近的微观研究揭示,氟喹诺酮(FQ)抗生素对光合生物具有生态毒理学影响,但毒性机制知之甚少。我们采用建模和实验技术相结合的方法,探讨 FQ 如何产生这些非预期的次级毒性作用。结构-活性分析表明,喹诺酮环和 FQ 抗生素中通常存在的二级氨基基团可能介导其作为光合系统 II(PS-II)醌结合位点抑制剂的作用,PS-II 是光合作用电子传递中的关键酶。随后涉及萘啶酸(Naldx)和环丙沙星(Cipro)的分子模拟实验,Naldx 是一种具有不良光合作用影响的非氟喹诺酮,Cipro 是最常用的 FQ 抗生素,结果表明,这两种药物都可能在立体化学上干扰反应中心 II(RC-II)的催化活性,RC-II 是 PS-II 中存在的叶绿素醌型中心。Naldx 可以占据 RC-II 中与次级醌受体(Q(B))相同的结合位点,并与酶促还原 Q(B)所需的氨基酸残基相互作用。Cipro 以略有不同的方式结合,表明存在不同的干扰机制。荧光诱导动力学是筛选 PS-II 抑制的常用方法,用该方法记录从暴露于 Cipro 的菠菜叶绿体中分离出的光激发类囊体膜的动力学,结果表明 Cipro 干扰了从激发天线叶绿素分子到 RC-II 中反应中心的能量转移([Cipro] >or= 5 microM 在体外,>or=10 microM 在体内),从而延迟了初级醌受体(Q(A))的光还原动力学([Cipro] >or= 0.6 microM 在体外)。暴露于 Cipro 的菠菜植物表现出严重的生长抑制,表现为叶片合成和根生长均减少([Cipro] >or= 0.5 microM 在体内)。因此,我们的结果表明,Cipro 和相关的 FQ 抗生素可能除了引起高等植物形态畸形外,还可能干扰光合作用途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验