Suppr超能文献

通过谱匹配和元相似性提高形状检索。

Improving shape retrieval by spectral matching and meta similarity.

机构信息

Department of Electrical Engineering, Ben-Gurion University, Beer-Sheva, Israel.

出版信息

IEEE Trans Image Process. 2010 May;19(5):1319-27. doi: 10.1109/TIP.2010.2040448. Epub 2010 Jan 12.

Abstract

We propose two computational approaches for improving the retrieval of planar shapes. First, we suggest a geometrically motivated quadratic similarity measure, that is optimized by way of spectral relaxation of a quadratic assignment. By utilizing state-of-the-art shape descriptors and a pairwise serialization constraint, we derive a formulation that is resilient to boundary noise, articulations and nonrigid deformations. This allows both shape matching and retrieval. We also introduce a shape meta-similarity measure that agglomerates pairwise shape similarities and improves the retrieval accuracy. When applied to the MPEG-7 shape dataset in conjunction with the proposed geometric matching scheme, we obtained a retrieval rate of 92.5%.

摘要

我们提出了两种计算方法来提高平面形状的检索性能。首先,我们提出了一种基于几何的二次相似性度量,该度量通过二次分配的谱松弛进行优化。通过利用最新的形状描述符和一对序列化约束,我们得到了一种对边界噪声、关节和非刚体变形具有鲁棒性的公式,这允许进行形状匹配和检索。我们还引入了一种形状元相似性度量,它可以聚集成对的形状相似性并提高检索准确性。当与我们提出的几何匹配方案一起应用于 MPEG-7 形状数据集时,我们获得了 92.5%的检索率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验