Akgül Ceyhun Burak, Sankur Bülent, Yemez Yücel, Schmitt Francis
Video Processing and Analysis Group, Philips Research Europe, High Tech Campus 36 (WOp122 O-1), 5656AE Eindhoven, The Netherlands.
IEEE Trans Pattern Anal Mach Intell. 2009 Jun;31(6):1117-33. doi: 10.1109/TPAMI.2009.25.
We address content-based retrieval of complete 3D object models by a probabilistic generative description of local shape properties. The proposed shape description framework characterizes a 3D object with sampled multivariate probability density functions of its local surface features. This density-based descriptor can be efficiently computed via kernel density estimation (KDE) coupled with fast Gauss transform. The non-parametric KDE technique allows reliable characterization of a diverse set of shapes and yields descriptors which remain relatively insensitive to small shape perturbations and mesh resolution. Density-based characterization also induces a permutation property which can be used to guarantee invariance at the shape matching stage. As proven by extensive retrieval experiments on several 3D databases, our framework provides state-of-the-art discrimination over a broad and heterogeneous set of shape categories.
我们通过对局部形状属性进行概率生成描述来解决完整3D对象模型基于内容的检索问题。所提出的形状描述框架用其局部表面特征的采样多元概率密度函数来表征3D对象。这种基于密度的描述符可以通过结合快速高斯变换的核密度估计(KDE)有效地计算出来。非参数KDE技术允许对各种形状进行可靠的表征,并产生对小形状扰动和网格分辨率相对不敏感的描述符。基于密度的表征还诱导出一种置换属性,可用于在形状匹配阶段保证不变性。正如在几个3D数据库上进行的广泛检索实验所证明的那样,我们的框架在广泛且异构的形状类别集合上提供了最先进的辨别能力。