Suppr超能文献

蒙特卡罗方法研究扫描质子笔形束的低剂量包络

Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams.

机构信息

Department of Radiation Physics, The University of Texas M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.

出版信息

Phys Med Biol. 2010 Feb 7;55(3):711-21. doi: 10.1088/0031-9155/55/3/011. Epub 2010 Jan 13.

Abstract

Scanned proton pencil beams carry a low-dose envelope that extends several centimeters from the individual beam's central axis. Thus, the total delivered dose depends on the size of the target volume and the corresponding number and intensity of beams necessary to cover the target volume uniformly. This dependence must be considered in dose calculation algorithms used by treatment planning systems. In this work, we investigated the sources of particles contributing to the low-dose envelope using the Monte Carlo technique. We used a validated model of our institution's scanning beam line to determine the contributions to the low-dose envelope from secondary particles created in a water phantom and particles scattered in beam line components. Our results suggested that, for high-energy beams, secondary particles produced by nuclear interactions in the water phantom are the major contributors to the low-dose envelope. For low-energy beams, the low-dose envelope is dominated by particles undergoing multiple Coulomb scattering in the beam line components and water phantom. Clearly, in the latter situation, the low-dose envelope depends directly on beam line design features. Finally, we investigated the dosimetric consequences of the low-dose envelope. Our results showed that if not modeled properly the low-dose envelope may cause clinically relevant dose disturbance in the target volume. This work suggested that this low-dose envelope is beam line specific for low-energy beams, should be thoroughly experimentally characterized and validated during commissioning of the treatment planning system, and therefore is of great concern for accurate delivery of proton scanning beam doses.

摘要

扫描质子笔形束携带的低剂量包络从单个射束的中心轴延伸数厘米。因此,总传递剂量取决于靶区的大小以及覆盖靶区所需的光束数量和强度。在治疗计划系统中使用的剂量计算算法中必须考虑这种依赖性。在这项工作中,我们使用蒙特卡罗技术研究了导致低剂量包络的粒子源。我们使用我们机构的扫描束线的经过验证的模型来确定来自水中体模中产生的次级粒子和在束线组件中散射的粒子对低剂量包络的贡献。我们的结果表明,对于高能束,水中体模中核相互作用产生的次级粒子是低剂量包络的主要贡献者。对于低能束,低剂量包络主要由束线组件和水中体模中的多次库仑散射粒子组成。显然,在后一种情况下,低剂量包络直接取决于束线设计特征。最后,我们研究了低剂量包络的剂量学后果。我们的结果表明,如果不进行适当建模,低剂量包络可能会导致靶区中临床相关的剂量干扰。这项工作表明,对于低能束,这种低剂量包络是束线特有的,在治疗计划系统的调试过程中应进行彻底的实验表征和验证,因此对于准确传递质子扫描束剂量非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验