Suppr超能文献

调控性 T 细胞命运中 Foxp3 基因中保守非编码 DNA 元件的作用。

Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate.

机构信息

Howard Hughes Medical Institute and Department of Immunology, University of Washington, Seattle, Washington 98195, USA.

出版信息

Nature. 2010 Feb 11;463(7282):808-12. doi: 10.1038/nature08750. Epub 2010 Jan 13.

Abstract

Immune homeostasis is dependent on tight control over the size of a population of regulatory T (T(reg)) cells capable of suppressing over-exuberant immune responses. The T(reg) cell subset is comprised of cells that commit to the T(reg) lineage by upregulating the transcription factor Foxp3 either in the thymus (tT(reg)) or in the periphery (iT(reg)). Considering a central role for Foxp3 in T(reg) cell differentiation and function, we proposed that conserved non-coding DNA sequence (CNS) elements at the Foxp3 locus encode information defining the size, composition and stability of the T(reg) cell population. Here we describe the function of three Foxp3 CNS elements (CNS1-3) in T(reg) cell fate determination in mice. The pioneer element CNS3, which acts to potently increase the frequency of T(reg) cells generated in the thymus and the periphery, binds c-Rel in in vitro assays. In contrast, CNS1, which contains a TGF-beta-NFAT response element, is superfluous for tT(reg) cell differentiation, but has a prominent role in iT(reg) cell generation in gut-associated lymphoid tissues. CNS2, although dispensable for Foxp3 induction, is required for Foxp3 expression in the progeny of dividing T(reg) cells. Foxp3 binds to CNS2 in a Cbf-beta-Runx1 and CpG DNA demethylation-dependent manner, suggesting that Foxp3 recruitment to this 'cellular memory module' facilitates the heritable maintenance of the active state of the Foxp3 locus and, therefore, T(reg) lineage stability. Together, our studies demonstrate that the composition, size and maintenance of the T(reg) cell population are controlled by Foxp3 CNS elements engaged in response to distinct cell-extrinsic or -intrinsic cues.

摘要

免疫稳态依赖于对调节性 T(Treg)细胞群体大小的严格控制,该细胞群体能够抑制过度活跃的免疫反应。Treg 细胞亚群由在胸腺(tTreg)或外周组织(iTreg)中上调转录因子 Foxp3 而转向 Treg 谱系的细胞组成。考虑到 Foxp3 在 Treg 细胞分化和功能中的核心作用,我们提出 Foxp3 基因座上的保守非编码 DNA 序列(CNS)元件编码定义 Treg 细胞群体大小、组成和稳定性的信息。在这里,我们描述了 Foxp3 CNS 元件(CNS1-3)在小鼠 Treg 细胞命运决定中的功能。先驱元件 CNS3 能够有力地增加胸腺和外周组织中产生的 Treg 细胞的频率,在体外实验中与 c-Rel 结合。相比之下,含有 TGF-β-NFAT 反应元件的 CNS1 对于 tTreg 细胞分化是多余的,但在肠道相关淋巴组织中 iTreg 细胞的产生中具有突出作用。CNS2 虽然对于 Foxp3 的诱导不是必需的,但对于 Treg 细胞后代中 Foxp3 的表达是必需的。Foxp3 以 Cbf-β-Runx1 和 CpG DNA 去甲基化依赖的方式与 CNS2 结合,表明 Foxp3 募集到这个“细胞记忆模块”有助于 Foxp3 基因座的活性状态的可遗传维持,从而稳定 Treg 谱系。总之,我们的研究表明,Treg 细胞群体的组成、大小和维持受到 Foxp3 CNS 元件的控制,这些元件响应不同的细胞外或细胞内信号。

相似文献

1
Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate.
Nature. 2010 Feb 11;463(7282):808-12. doi: 10.1038/nature08750. Epub 2010 Jan 13.
2
c-Rel: a pioneer in directing regulatory T-cell lineage commitment?
Eur J Immunol. 2010 Mar;40(3):664-7. doi: 10.1002/eji.201040372.
3
To be or not to be a Treg cell: lineage decisions controlled by epigenetic mechanisms.
Sci Signal. 2011 Feb 1;4(158):pe4. doi: 10.1126/scisignal.2001783.
4
Smad3 binding to the foxp3 enhancer is dispensable for the development of regulatory T cells with the exception of the gut.
J Exp Med. 2012 Aug 27;209(9):1529-35. doi: 10.1084/jem.20112646. Epub 2012 Aug 20.
5
Foxp3 enhancers synergize to maximize regulatory T cell suppressive capacity.
J Exp Med. 2021 Aug 2;218(8). doi: 10.1084/jem.20202415. Epub 2021 Jun 4.
6
Thymically-derived Foxp3+ regulatory T cells are the primary regulators of type 1 diabetes in the non-obese diabetic mouse model.
PLoS One. 2019 Oct 24;14(10):e0217728. doi: 10.1371/journal.pone.0217728. eCollection 2019.
7
Control of Foxp3 stability through modulation of TET activity.
J Exp Med. 2016 Mar 7;213(3):377-97. doi: 10.1084/jem.20151438. Epub 2016 Feb 22.
8
Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells.
Nat Immunol. 2010 Jul;11(7):618-27. doi: 10.1038/ni.1884. Epub 2010 May 13.
9
Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus.
J Immunol. 2013 Apr 1;190(7):3180-8. doi: 10.4049/jimmunol.1203473. Epub 2013 Feb 18.
10
Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells.
Nat Immunol. 2009 Nov;10(11):1170-7. doi: 10.1038/ni.1795. Epub 2009 Sep 20.

引用本文的文献

1
Emergent dynamics of cellular decision making in multi-node mutually repressive regulatory networks.
J R Soc Interface. 2025 Aug;22(229):20250190. doi: 10.1098/rsif.2025.0190. Epub 2025 Aug 20.
2
CREB regulates Foxp3ST-2 T with enhanced IL-10 production.
Front Immunol. 2025 Jul 24;16:1601008. doi: 10.3389/fimmu.2025.1601008. eCollection 2025.
4
Epigenetic instability and hypofunctionality of fetal Tregs allow a permissive regulatory environment for T effector memory maturation.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2506673122. doi: 10.1073/pnas.2506673122. Epub 2025 Jul 24.
5
The role of gut microbial metabolites in the T cell lifecycle.
Nat Immunol. 2025 Jul 21. doi: 10.1038/s41590-025-02227-2.
6
Machine learning-assisted decoding of temporal transcriptional dynamics via fluorescent timer.
Nat Commun. 2025 Jul 1;16(1):5720. doi: 10.1038/s41467-025-61279-y.
7
Therapeutic Potential of Polyphenols in Targeting Th17/Treg Balance for Intestinal Barrier Maintenance.
Food Sci Nutr. 2025 Jun 7;13(6):e70400. doi: 10.1002/fsn3.70400. eCollection 2025 Jun.
8
Targeting Setdb1 in T cells induces transplant tolerance without compromising antitumor immunity.
Nat Commun. 2025 May 15;16(1):4534. doi: 10.1038/s41467-025-58841-z.
9
The NF-κB signaling network in the life of T cells.
Front Immunol. 2025 Apr 30;16:1559494. doi: 10.3389/fimmu.2025.1559494. eCollection 2025.
10
Interferon-γ and IL-27 positively regulate type 1 regulatory T cell development during adaptive tolerance.
iScience. 2025 Mar 28;28(5):112308. doi: 10.1016/j.isci.2025.112308. eCollection 2025 May 16.

本文引用的文献

1
Runx proteins regulate Foxp3 expression.
J Exp Med. 2009 Oct 26;206(11):2329-37. doi: 10.1084/jem.20090226. Epub 2009 Oct 19.
2
Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells.
Immunity. 2009 Oct 16;31(4):609-20. doi: 10.1016/j.immuni.2009.09.003. Epub 2009 Oct 1.
3
Runx-CBFbeta complexes control expression of the transcription factor Foxp3 in regulatory T cells.
Nat Immunol. 2009 Nov;10(11):1170-7. doi: 10.1038/ni.1795. Epub 2009 Sep 20.
4
Regulatory T cells and immune tolerance.
Cell. 2008 May 30;133(5):775-87. doi: 10.1016/j.cell.2008.05.009.
5
DNA methylation controls Foxp3 gene expression.
Eur J Immunol. 2008 Jun;38(6):1654-63. doi: 10.1002/eji.200838105.
6
A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells.
Nat Immunol. 2008 Jun;9(6):632-40. doi: 10.1038/ni.1607. Epub 2008 Apr 27.
7
Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer.
Nat Immunol. 2008 Feb;9(2):194-202. doi: 10.1038/ni1549. Epub 2007 Dec 23.
8
CREB/ATF-dependent T cell receptor-induced FoxP3 gene expression: a role for DNA methylation.
J Exp Med. 2007 Jul 9;204(7):1543-51. doi: 10.1084/jem.20070109. Epub 2007 Jun 25.
10
Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease.
J Exp Med. 2007 Jun 11;204(6):1335-47. doi: 10.1084/jem.20070081. Epub 2007 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验