Suppr超能文献

世界计算网格上的蛋白质结晶分析。

Protein crystallization analysis on the World Community Grid.

作者信息

Cumbaa Christian A, Jurisica Igor

机构信息

Division of Signaling Biology, Ontario Cancer Institute, University Health Network, Toronto Medical Discovery Tower, 9-305, 101 College Street, Toronto, ON, M5G 1L7, Canada.

出版信息

J Struct Funct Genomics. 2010 Mar;11(1):61-9. doi: 10.1007/s10969-009-9076-9. Epub 2010 Jan 14.

Abstract

We have developed an image-analysis and classification system for automatically scoring images from high-throughput protein crystallization trials. Image analysis for this system is performed by the Help Conquer Cancer (HCC) project on the World Community Grid. HCC calculates 12,375 distinct image features on microbatch-under-oil images from the Hauptman-Woodward Medical Research Institute's High-Throughput Screening Laboratory. Using HCC-computed image features and a massive training set of 165,351 hand-scored images, we have trained multiple Random Forest classifiers that accurately recognize multiple crystallization outcomes, including crystals, clear drops, precipitate, and others. The system successfully recognizes 80% of crystal-bearing images, 89% of precipitate images, and 98% of clear drops.

摘要

我们开发了一种图像分析和分类系统,用于自动对高通量蛋白质结晶试验的图像进行评分。该系统的图像分析由世界社区网格上的“助力攻克癌症”(HCC)项目执行。HCC从豪普特曼-伍德沃德医学研究所的高通量筛选实验室的油下微量批次图像中计算出12375个不同的图像特征。利用HCC计算出的图像特征和一个包含165351张人工评分图像的大规模训练集,我们训练了多个随机森林分类器,这些分类器能够准确识别多种结晶结果,包括晶体、清澈液滴、沉淀及其他。该系统成功识别出80%的含晶体图像、89%的沉淀图像和98%的清澈液滴图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5f7/2857471/00abf92f976d/10969_2009_9076_Fig1_HTML.jpg

相似文献

1
Protein crystallization analysis on the World Community Grid.
J Struct Funct Genomics. 2010 Mar;11(1):61-9. doi: 10.1007/s10969-009-9076-9. Epub 2010 Jan 14.
2
Spectroscopic imaging of protein crystals in crystallization drops.
J Struct Funct Genomics. 2005;6(2-3):203-8. doi: 10.1007/s10969-005-1914-9.
3
Using textons to rank crystallization droplets by the likely presence of crystals.
Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2702-18. doi: 10.1107/S1399004714017581. Epub 2014 Sep 27.
4
Automatic classification of sub-microlitre protein-crystallization trials in 1536-well plates.
Acta Crystallogr D Biol Crystallogr. 2003 Sep;59(Pt 9):1619-27. doi: 10.1107/s0907444903015130. Epub 2003 Aug 19.
5
Development of an automated large-scale protein-crystallization and monitoring system for high-throughput protein-structure analyses.
Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1058-65. doi: 10.1107/S0907444906023821. Epub 2006 Aug 19.
7
Automatic classification and pattern discovery in high-throughput protein crystallization trials.
J Struct Funct Genomics. 2005;6(2-3):195-202. doi: 10.1007/s10969-005-5243-9.
8
Screening and optimization methods for nonautomated crystallization laboratories.
Methods Mol Biol. 2007;363:131-51. doi: 10.1007/978-1-59745-209-0_7.
9
: an open-source graphical user interface for crystallization screening.
J Appl Crystallogr. 2021 Feb 19;54(Pt 2):673-679. doi: 10.1107/S1600576721000108. eCollection 2021 Apr 1.
10
Automated classification of protein crystallization images using support vector machines with scale-invariant texture and Gabor features.
Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):271-9. doi: 10.1107/S0907444905041648. Epub 2006 Feb 22.

引用本文的文献

1
CHiMP: deep-learning tools trained on protein crystallization micrographs to enable automation of experiments.
Acta Crystallogr D Struct Biol. 2024 Oct 1;80(Pt 10):744-764. doi: 10.1107/S2059798324009276.
2
Deep learning applications in protein crystallography.
Acta Crystallogr A Found Adv. 2024 Jan 1;80(Pt 1):1-17. doi: 10.1107/S2053273323009300.
3
Crystal search - feasibility study of a real-time deep learning process for crystallization well images.
Acta Crystallogr A Found Adv. 2023 Jul 1;79(Pt 4):331-338. doi: 10.1107/S2053273323001948. Epub 2023 Jun 2.
4
Protein Crystallization Segmentation and Classification Using Subordinate Color Channel in Fluorescence Microscopy Images.
J Fluoresc. 2020 May;30(3):637-656. doi: 10.1007/s10895-020-02500-7. Epub 2020 Apr 20.
5
Classification of crystallization outcomes using deep convolutional neural networks.
PLoS One. 2018 Jun 20;13(6):e0198883. doi: 10.1371/journal.pone.0198883. eCollection 2018.
6
Characterization of Protein Nanocrystals Based on the Reversibility of Crystallization.
Cryst Growth Des. 2016 Jul 6;16(7):3838-3845. doi: 10.1021/acs.cgd.6b00384. Epub 2016 May 10.
7
Feature analysis for classification of trace fluorescent labeled protein crystallization images.
BioData Min. 2017 Apr 27;10:14. doi: 10.1186/s13040-017-0133-9. eCollection 2017.
8
Super-Thresholding: Supervised Thresholding of Protein Crystal Images.
IEEE/ACM Trans Comput Biol Bioinform. 2017 Jul-Aug;14(4):986-998. doi: 10.1109/TCBB.2016.2542811. Epub 2016 Mar 16.
9
CrystPro: Spatiotemporal Analysis of Protein Crystallization Images.
Cryst Growth Des. 2015;15(11):5254-5262. doi: 10.1021/acs.cgd.5b00714. Epub 2015 Sep 16.
10
Evaluation of Normalization and PCA on the Performance of Classifiers for Protein Crystallization Images.
Proc IEEE Southeastcon. 2014 Mar;2014. doi: 10.1109/SECON.2014.6950744.

本文引用的文献

1
AutoSherlock: a program for effective crystallization data analysis.
J Appl Crystallogr. 2008 Dec 1;41(Pt 6):1173-1176. doi: 10.1107/S0021889808028938. Epub 2008 Oct 11.
2
Leveraging genetic algorithm and neural network in automated protein crystal recognition.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1926-9. doi: 10.1109/IEMBS.2008.4649564.
3
Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples.
Acta Crystallogr D Biol Crystallogr. 2008 Nov;64(Pt 11):1131-7. doi: 10.1107/S0907444908028059. Epub 2008 Oct 18.
4
Establishing a training set through the visual analysis of crystallization trials. Part I: approximately 150,000 images.
Acta Crystallogr D Biol Crystallogr. 2008 Nov;64(Pt 11):1123-30. doi: 10.1107/S0907444908028047. Epub 2008 Oct 18.
5
Image-based crystal detection: a machine-learning approach.
Acta Crystallogr D Biol Crystallogr. 2008 Dec;64(Pt 12):1187-95. doi: 10.1107/S090744490802982X. Epub 2008 Nov 18.
6
Automated classification of protein crystallization images using support vector machines with scale-invariant texture and Gabor features.
Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):271-9. doi: 10.1107/S0907444905041648. Epub 2006 Feb 22.
7
Evaluation of crystalline objects in crystallizing protein droplets based on line-segment information in greyscale images.
Acta Crystallogr D Biol Crystallogr. 2006 Mar;62(Pt 3):239-45. doi: 10.1107/S0907444905041077. Epub 2006 Feb 22.
8
Automatic classification and pattern discovery in high-throughput protein crystallization trials.
J Struct Funct Genomics. 2005;6(2-3):195-202. doi: 10.1007/s10969-005-5243-9.
9
Evaluation of protein crystallization states based on texture information derived from greyscale images.
Acta Crystallogr D Biol Crystallogr. 2005 Jul;61(Pt 7):873-80. doi: 10.1107/S0907444905007948. Epub 2005 Jun 24.
10
Automatic classification of sub-microlitre protein-crystallization trials in 1536-well plates.
Acta Crystallogr D Biol Crystallogr. 2003 Sep;59(Pt 9):1619-27. doi: 10.1107/s0907444903015130. Epub 2003 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验