Suppr超能文献

蛋白质结晶图像分类器性能的归一化和主成分分析评估

Evaluation of Normalization and PCA on the Performance of Classifiers for Protein Crystallization Images.

作者信息

Dinç İmren, Sigdel Madhav, Dinç Semih, Sigdel Madhu S, Pusey Marc L, Aygün Ramazan S

机构信息

DataMedia Research Lab, Computer Science Department, University of Alabama in Huntsville, Huntsville Alabama 35899.

iXpressGenes Inc., 601 Genome Way, Huntsville, Alabama 35806.

出版信息

Proc IEEE Southeastcon. 2014 Mar;2014. doi: 10.1109/SECON.2014.6950744.

Abstract

In this paper, we investigate the performance of classification of protein crystallization images captured during protein crystal growth process. We group protein crystallization images into 3 categories: noncrystals, likely leads (conditions that may yield formation of crystals) and crystals. In this research, we only consider the subcategories of noncrystal and likely leads protein crystallization images separately. We use 5 different classifiers to solve this problem and we applied some data preprocessing methods such as principal component analysis (PCA), min-max (MM) normalization and z-score (ZS) normalization methods to our datasets in order to evaluate their effects on classifiers for the noncrystal and likely leads datasets. We performed our experiments on 1606 noncrystal and 245 likely leads images independently. We had satisfactory results for both datasets. We reached 96.8% accuracy for noncrystal dataset and 94.8% accuracy for likely leads dataset. Our target is to investigate the best classifiers with optimal preprocessing techniques on both noncrystal and likely leads datasets.

摘要

在本文中,我们研究了在蛋白质晶体生长过程中捕获的蛋白质结晶图像的分类性能。我们将蛋白质结晶图像分为3类:非晶体、可能的晶核(可能产生晶体形成的条件)和晶体。在本研究中,我们仅分别考虑非晶体和可能的晶核蛋白质结晶图像的子类别。我们使用5种不同的分类器来解决这个问题,并对我们的数据集应用了一些数据预处理方法,如主成分分析(PCA)、最小-最大(MM)归一化和z分数(ZS)归一化方法,以评估它们对非晶体和可能的晶核数据集的分类器的影响。我们分别对1606张非晶体图像和245张可能的晶核图像进行了实验。两个数据集都取得了令人满意的结果。非晶体数据集的准确率达到了96.8%,可能的晶核数据集的准确率达到了94.8%。我们的目标是在非晶体和可能的晶核数据集上研究采用最优预处理技术的最佳分类器。

相似文献

6
CrystPro: Spatiotemporal Analysis of Protein Crystallization Images.CrystPro:蛋白质结晶图像的时空分析
Cryst Growth Des. 2015;15(11):5254-5262. doi: 10.1021/acs.cgd.5b00714. Epub 2015 Sep 16.

引用本文的文献

本文引用的文献

2
Protein crystallization analysis on the World Community Grid.世界计算网格上的蛋白质结晶分析。
J Struct Funct Genomics. 2010 Mar;11(1):61-9. doi: 10.1007/s10969-009-9076-9. Epub 2010 Jan 14.
4
Predictive models for protein crystallization.
Methods. 2004 Nov;34(3):390-407. doi: 10.1016/j.ymeth.2004.03.031.
5
Computational analysis of crystallization trials.结晶试验的计算分析。
Acta Crystallogr D Biol Crystallogr. 2002 Nov;58(Pt 11):1915-23. doi: 10.1107/s0907444902016840. Epub 2002 Oct 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验