Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA.
J Comput Chem. 2010 Apr 30;31(6):1143-53. doi: 10.1002/jcc.21399.
In this and the accompanying article, we report the development of new physics-based side-chain-rotamer and virtual-bond-deformation potentials which now replace the respective statistical potentials used so far in our physics-based united-reside UNRES force field for large-scale simulations of protein structure and dynamics. In this article, we describe the methodology for determining the corresponding potentials of mean force (PMF's) from the energy surfaces of terminally-blocked amino-acid residues calculated with the AM1 quantum-mechanical semiempirical method. The approach is based on minimization of the AM1 energy for fixed values of the angles lambda for rotation of the peptide groups about the C(alpha)...C(alpha) virtual bonds, and for fixed values of the side-chain dihedral angles chi, which formed a multidimensional grid. A harmonic-approximation approach was developed to extrapolate from the energy at a given grid point to other points of the conformational space to compute the respective contributions to the PMF. To test the applicability of the harmonic approximation, the rotamer PMF's of alanine and valine obtained with this approach have been compared with those obtained by using a Metropolis Monte Carlo method. The PMF surfaces computed with the harmonic approximation are more rugged and have more pronounced minima than the MC-calculated surfaces but the harmonic-approximation- and MC-calculated PMF values are linearly correlated. The potentials derived with the harmonic approximation are, therefore, appropriate for UNRES for which the weights (scaling factors) of the energy terms are determined by force-field optimization for foldability.
在本文和相关文章中,我们报告了新的基于物理的侧链旋转异构体和虚拟键变形势的发展,这些势现在取代了迄今为止在我们基于物理的统一残基 UNRES 力场中用于大规模蛋白质结构和动力学模拟的相应统计势。在本文中,我们描述了从用 AM1 量子力学半经验方法计算的末端封闭氨基酸残基的能量表面确定相应的平均力势能(PMF)的方法。该方法基于在固定的肽基团围绕 C(alpha)…C(alpha)虚拟键旋转的角度 lambda 和形成多维网格的侧链二面角 chi 的固定值下最小化 AM1 能量。我们开发了一种谐波逼近方法,从给定网格点的能量外推到构象空间的其他点,以计算各自对 PMF 的贡献。为了测试谐波逼近的适用性,我们使用这种方法比较了丙氨酸和缬氨酸的旋转异构体 PMF,与使用 Metropolis 蒙特卡罗方法获得的 PMF。与 MC 计算的表面相比,用谐波逼近计算的 PMF 表面更崎岖,具有更明显的最小值,但谐波逼近和 MC 计算的 PMF 值是线性相关的。因此,对于 UNRES,这种基于谐波逼近的势是合适的,因为 UNRES 的能量项的权重(缩放因子)是通过折叠能力的力场优化来确定的。