Liwo Adam, Sieradzan Adam K, Lipska Agnieszka G, Czaplewski Cezary, Joung InSuk, Żmudzińska Wioletta, Hałabis Anna, Ołdziej Stanisław
Faculty of Chemistry, University of Gdańsk, ul. Wita-Stwosza 63, 80-308 Gdańsk, Poland.
School of Computational Sciences, Korea Institute for Advanced Study, 87 Hoegiro, Dongdaemun-gu, 130-722 Seoul, South Korea.
J Chem Phys. 2019 Apr 21;150(15):155104. doi: 10.1063/1.5093015.
The general theory of the construction of scale-consistent energy terms in the coarse-grained force fields presented in Paper I of this series has been applied to the revision of the UNRES force field for physics-based simulations of proteins. The potentials of mean force corresponding to backbone-local and backbone-correlation energy terms were calculated from the ab initio energy surfaces of terminally blocked glycine, alanine, and proline, and the respective analytical expressions, derived by using the scale-consistent formalism, were fitted to them. The parameters of all these potentials depend on single-residue types, thus reducing their number and preventing over-fitting. The UNRES force field with the revised backbone-local and backbone-correlation terms was calibrated with a set of four small proteins with basic folds: tryptophan cage variant (TRP1; α), Full Sequence Design (FSD; α + β), villin headpiece (villin; α), and a truncated FBP-28 WW-domain variant (2MWD; β) (the NEWCT-4P force field) and, subsequently, with an enhanced set of 9 proteins composed of TRP1, FSD, villin, 1BDC (α), 2I18 (α), 1QHK (α + β), 2N9L (α + β), 1E0L (β), and 2LX7 (β) (the NEWCT-9P force field). The NEWCT-9P force field performed better than NEWCT-4P in a blind-prediction-like test with a set of 26 proteins not used in calibration and outperformed, in a test with 76 proteins, the most advanced OPT-WTFSA-2 version of UNRES with former backbone-local and backbone-correlation terms that contained more energy terms and more optimizable parameters. The NEWCT-9P force field reproduced the bimodal distribution of backbone-virtual-bond angles in the simulated structures, as observed in experimental protein structures.
本系列论文I中提出的粗粒化力场中尺度一致能量项构建的一般理论已应用于UNRES力场的修订,用于基于物理的蛋白质模拟。对应于主链局部和主链相关能量项的平均力势,是根据末端封闭的甘氨酸、丙氨酸和脯氨酸的从头算能量表面计算得出的,并且通过使用尺度一致形式推导得到的相应解析表达式被拟合到这些表面上。所有这些势的参数都取决于单残基类型,从而减少了参数数量并防止了过拟合。带有修订后主链局部和主链相关项的UNRES力场,使用一组具有基本折叠的四种小蛋白质进行了校准:色氨酸笼变体(TRP1;α)、全序列设计(FSD;α + β)、绒毛蛋白头部结构域(绒毛蛋白;α)和截短的FBP - 28 WW结构域变体(2MWD;β)(NEWCT - 4P力场),随后,又使用由TRP1、FSD、绒毛蛋白、1BDC(α)、2I18(α)、1QHK(α + β)、2N9L(α + β)、1E0L(β)和2LX7(β)组成的一组增强的9种蛋白质进行了校准(NEWCT - 9P力场)。在一项类似盲预测的测试中,对于一组未在校准中使用的26种蛋白质,NEWCT - 9P力场的表现优于NEWCT - 搜索。在一项针对76种蛋白质的测试中,它比包含更多能量项和更多可优化参数的具有先前主链局部和主链相关项的最先进的OPT - WTFSA - 2版本的UNRES表现更好。NEWCT - 9P力场在模拟结构中重现了实验蛋白质结构中观察到的主链虚拟键角的双峰分布。