Suppr超能文献

视网膜光异构酶在蜜蜂视觉循环中的作用。

The role of retinal photoisomerase in the visual cycle of the honeybee.

作者信息

Smith W C, Goldsmith T H

机构信息

Department of Biology, Yale University, New Haven, Connecticut 06511.

出版信息

J Gen Physiol. 1991 Jan;97(1):143-65. doi: 10.1085/jgp.97.1.143.

Abstract

The compound eye of the honeybee has previously been shown to contain a soluble retinal photoisomerase which, in vitro, is able to catalyze stereospecifically the photoconversion of all-trans retinal to 11-cis retinal. In this study we combine in vivo and in vitro techniques to demonstrate how the retinal photoisomerase is involved in the visual cycle, creating 11-cis retinal for the generation of visual pigment. Honeybees have approximately 2.5 pmol/eye of retinal associated with visual pigments, but larger amounts (4-12 pmol/eye) of both retinal and retinol bound to soluble proteins. When bees are dark adapted for 24 h or longer, greater than 80% of the endogenous retinal, mostly in the all-trans configuration, is associated with the retinal photoisomerase. On exposure to blue light the retinal is isomerized to 11-cis, which makes it available to an alcohol dehydrogenase. Most of it is then reduced to 11-cis retinol. The retinol is not esterified and remains associated with a soluble protein, serving as a reservoir of 11-cis retinoid available for renewal of visual pigment. Alternatively, 11-cis retinal can be transferred directly to opsin to regenerate rhodopsin, as shown by synthesis of rhodopsin in bleached frog rod outer segments. This retinaldehyde cycle from the honeybee is the third to be described. It appears very similar to the system in another group of arthropods, flies, and differs from the isomerization processes in vertebrates and cephalopod mollusks.

摘要

先前的研究表明,蜜蜂的复眼中含有一种可溶性视网膜光异构酶,该酶在体外能够立体特异性地催化全反式视网膜向11-顺式视网膜的光转化。在本研究中,我们结合体内和体外技术,以证明视网膜光异构酶如何参与视觉循环,产生11-顺式视网膜以生成视觉色素。蜜蜂每只眼睛中与视觉色素相关的视网膜约为2.5 pmol,但与可溶性蛋白质结合的视网膜和视黄醇的量更大(4 - 12 pmol/眼)。当蜜蜂暗适应24小时或更长时间时,超过80%的内源性视网膜(大多为全反式构型)与视网膜光异构酶相关。暴露于蓝光下时,视网膜异构化为11-顺式,使其可被乙醇脱氢酶利用。然后大部分被还原为11-顺式视黄醇。视黄醇不会被酯化,而是与一种可溶性蛋白质结合,作为可用于更新视觉色素的11-顺式类视黄醇的储存库。或者,11-顺式视网膜可以直接转移到视蛋白上以再生视紫红质,如在漂白的青蛙视杆外段中视紫红质的合成所示。蜜蜂的这种视黄醛循环是第三种被描述的循环。它看起来与另一类节肢动物——果蝇中的系统非常相似,并且与脊椎动物和头足类软体动物中的异构化过程不同。

相似文献

1
The role of retinal photoisomerase in the visual cycle of the honeybee.
J Gen Physiol. 1991 Jan;97(1):143-65. doi: 10.1085/jgp.97.1.143.
2
Localization of retinal photoisomerase in the compound eye of the honeybee.
Vis Neurosci. 1991 Sep;7(3):237-49. doi: 10.1017/s0952523800004053.
3
4
Retinoids bound to interstitial retinol-binding protein during light and dark-adaptation.
Vision Res. 1989;29(12):1699-709. doi: 10.1016/0042-6989(89)90152-1.
5
Photoreceptor recovery in retinoid-deprived rats after vitamin A replenishment.
Exp Eye Res. 1993 Jun;56(6):671-82. doi: 10.1006/exer.1993.1084.
7
8
The visual cycle operates via an isomerase acting on all-trans retinol in the pigment epithelium.
Science. 1987 Jun 26;236(4809):1678-80. doi: 10.1126/science.3603006.
10
The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones.
Vis Neurosci. 2017 Jan;34:E004. doi: 10.1017/S0952523817000013.

引用本文的文献

1
Ocular and extraocular roles of neuropsin in vertebrates.
Trends Neurosci. 2022 Mar;45(3):200-211. doi: 10.1016/j.tins.2021.11.008. Epub 2021 Dec 21.
2
Dark-adaptation in the eyes of a lake and a sea population of opossum shrimp (Mysis relicta): retinoid isomer dynamics, rhodopsin regeneration, and recovery of light sensitivity.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020 Nov;206(6):871-889. doi: 10.1007/s00359-020-01444-4. Epub 2020 Sep 3.
3
Molecular components affecting ocular carotenoid and retinoid homeostasis.
Prog Retin Eye Res. 2021 Jan;80:100864. doi: 10.1016/j.preteyeres.2020.100864. Epub 2020 Apr 25.
4
Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Mar;197(3):227-41. doi: 10.1007/s00359-010-0604-7. Epub 2010 Nov 3.
5
The evolution of eyes and visually guided behaviour.
Philos Trans R Soc Lond B Biol Sci. 2009 Oct 12;364(1531):2833-47. doi: 10.1098/rstb.2009.0083.

本文引用的文献

1
THE VISUAL SYSTEM OF THE HONEYBEE.
Proc Natl Acad Sci U S A. 1958 Feb;44(2):123-6. doi: 10.1073/pnas.44.2.123.
2
VITAMIN A IN THE VISION OF INSECTS.
J Gen Physiol. 1964 Jan;47(3):433-41. doi: 10.1085/jgp.47.3.433.
3
Quantitative determination of retinals with complete retention of their geometric configuration.
Biochim Biophys Acta. 1980 Mar 21;617(3):430-8. doi: 10.1016/0005-2760(80)90009-0.
4
Extracellular shedding of photoreceptor membrane in the open rhabdom of a tipulid fly.
Cell Tissue Res. 1980;205(3):423-38. doi: 10.1007/BF00232283.
5
Characteristics of retinal-binding proteins from the honeybee retina.
Vision Res. 1982;22(7):775-81. doi: 10.1016/0042-6989(82)90008-6.
6
Detergents for extraction of visual pigments: types, solubilization, and stability.
Methods Enzymol. 1982;81:133-40. doi: 10.1016/s0076-6879(82)81022-7.
7
Dark regeneration of rhodopsin in crayfish photoreceptors.
J Gen Physiol. 1984 Jul;84(1):63-81. doi: 10.1085/jgp.84.1.63.
8
Transient membrane shedding in Limulus photoreceptors: control mechanisms under natural lighting.
J Neurosci. 1984 Nov;4(11):2792-810. doi: 10.1523/JNEUROSCI.04-11-02792.1984.
9
Biogenesis of blowfly photoreceptor membranes is regulated by 11-cis-retinal.
Eur J Biochem. 1983 Dec 15;137(3):609-14. doi: 10.1111/j.1432-1033.1983.tb07869.x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验