Suppr超能文献

单酰甘油脂肪酶调节促进癌症发病机制的脂肪酸网络。

Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis.

机构信息

The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.

出版信息

Cell. 2010 Jan 8;140(1):49-61. doi: 10.1016/j.cell.2009.11.027.

Abstract

Tumor cells display progressive changes in metabolism that correlate with malignancy, including development of a lipogenic phenotype. How stored fats are liberated and remodeled to support cancer pathogenesis, however, remains unknown. Here, we show that the enzyme monoacylglycerol lipase (MAGL) is highly expressed in aggressive human cancer cells and primary tumors, where it regulates a fatty acid network enriched in oncogenic signaling lipids that promotes migration, invasion, survival, and in vivo tumor growth. Overexpression of MAGL in nonaggressive cancer cells recapitulates this fatty acid network and increases their pathogenicity-phenotypes that are reversed by an MAGL inhibitor. Impairments in MAGL-dependent tumor growth are rescued by a high-fat diet, indicating that exogenous sources of fatty acids can contribute to malignancy in cancers lacking MAGL activity. Together, these findings reveal how cancer cells can co-opt a lipolytic enzyme to translate their lipogenic state into an array of protumorigenic signals. PAPERFLICK:

摘要

肿瘤细胞的代谢会发生进行性变化,这些变化与恶性肿瘤相关,包括产生生脂表型。然而,储存的脂肪是如何被释放和重塑以支持癌症发病机制的仍然未知。在这里,我们表明,单酰基甘油脂肪酶(MAGL)在侵袭性人类癌细胞和原发性肿瘤中高度表达,它调节富含致癌信号脂质的脂肪酸网络,促进迁移、侵袭、存活和体内肿瘤生长。在非侵袭性癌细胞中过表达 MAGL 可再现这种脂肪酸网络,并增加其致病性表型,而 MAGL 抑制剂可逆转这些表型。MAGL 依赖性肿瘤生长的损伤可通过高脂肪饮食得到挽救,这表明缺乏 MAGL 活性的癌症中,外源性脂肪酸来源可能有助于恶性肿瘤的发生。总之,这些发现揭示了癌细胞如何利用脂肪酶将其生脂状态转化为一系列促肿瘤信号。

相似文献

1
Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis.
Cell. 2010 Jan 8;140(1):49-61. doi: 10.1016/j.cell.2009.11.027.
3
Enhanced monoacylglycerol lipolysis by ABHD6 promotes NSCLC pathogenesis.
EBioMedicine. 2020 Mar;53:102696. doi: 10.1016/j.ebiom.2020.102696. Epub 2020 Mar 3.
5
Lid domain plasticity and lipid flexibility modulate enzyme specificity in human monoacylglycerol lipase.
Biochim Biophys Acta Mol Cell Biol Lipids. 2017 May;1862(5):441-451. doi: 10.1016/j.bbalip.2017.01.002. Epub 2017 Jan 12.
6
Monoacylglycerol lipase (MAGL) knockdown inhibits tumor cells growth in colorectal cancer.
Cancer Lett. 2011 Aug 1;307(1):6-17. doi: 10.1016/j.canlet.2011.03.007. Epub 2011 May 4.
7
Monoacylglycerol lipase promotes metastases in nasopharyngeal carcinoma.
Int J Clin Exp Pathol. 2014 Jun 15;7(7):3704-13. eCollection 2014.
8
Reversible Monoacylglycerol Lipase Inhibitors: Discovery of a New Class of Benzylpiperidine Derivatives.
J Med Chem. 2022 May 26;65(10):7118-7140. doi: 10.1021/acs.jmedchem.1c01806. Epub 2022 May 6.
9
Chewing the fat on tumor cell metabolism.
Cell. 2010 Jan 8;140(1):28-30. doi: 10.1016/j.cell.2009.12.037.

引用本文的文献

2
Unconventional T cells in anti-cancer immunity.
Front Immunol. 2025 Jul 17;16:1618393. doi: 10.3389/fimmu.2025.1618393. eCollection 2025.
4
Modulation of lipid metabolism by exercise: exploring its potential as a therapeutic target in cancer endocrinology.
Front Endocrinol (Lausanne). 2025 May 23;16:1580559. doi: 10.3389/fendo.2025.1580559. eCollection 2025.
6
TRPM2 channels mediate ROS-induced actin remodeling and cell migration of prostate cancer cells.
BMC Cancer. 2025 May 28;25(1):956. doi: 10.1186/s12885-025-14333-3.
8
Immunomodulatory behavior of CircRNAs in tumor microenvironment.
Oncol Res. 2025 Apr 18;33(5):1105-1119. doi: 10.32604/or.2024.054623. eCollection 2025.
9
Acetyl-11-keto-β-boswellic acid alleviates hepatic metabolic dysfunction by inhibiting MGLL activity.
J Lipid Res. 2025 May;66(5):100812. doi: 10.1016/j.jlr.2025.100812. Epub 2025 Apr 17.
10
MAGL targeted PROTAC degrader simultaneously enhances P53 for synergistic treatment of glioblastoma stem cell.
Cell Death Discov. 2025 Mar 20;11(1):109. doi: 10.1038/s41420-025-02392-1.

本文引用的文献

3
Tumours with PI3K activation are resistant to dietary restriction.
Nature. 2009 Apr 9;458(7239):725-31. doi: 10.1038/nature07782. Epub 2009 Mar 11.
4
Tumor suppressors and cell metabolism: a recipe for cancer growth.
Genes Dev. 2009 Mar 1;23(5):537-48. doi: 10.1101/gad.1756509.
5
The plasminogen activator system and cancer.
Pathophysiol Haemost Thromb. 2008;36(3-4):184-94. doi: 10.1159/000175156. Epub 2009 Jan 27.
6
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18782-7. doi: 10.1073/pnas.0810199105. Epub 2008 Nov 24.
7
Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects.
Nat Chem Biol. 2009 Jan;5(1):37-44. doi: 10.1038/nchembio.129. Epub 2008 Nov 23.
8
PI3K pathway alterations in cancer: variations on a theme.
Oncogene. 2008 Sep 18;27(41):5497-510. doi: 10.1038/onc.2008.245.
9
Spatiotemporal analysis of differential Akt regulation in plasma membrane microdomains.
Mol Biol Cell. 2008 Oct;19(10):4366-73. doi: 10.1091/mbc.e08-05-0449. Epub 2008 Aug 13.
10
Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110 alpha.
Cancer Cell. 2008 Aug 12;14(2):180-92. doi: 10.1016/j.ccr.2008.06.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验