Suppr超能文献

高保真DNA聚合酶的动力学及化学机制

The kinetic and chemical mechanism of high-fidelity DNA polymerases.

作者信息

Johnson Kenneth A

机构信息

Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, 2500 Speedway, Austin, TX 78712, USA.

出版信息

Biochim Biophys Acta. 2010 May;1804(5):1041-8. doi: 10.1016/j.bbapap.2010.01.006. Epub 2010 Jan 15.

Abstract

This review summarizes our current understanding of the structural, kinetic and thermodynamic basis for the extraordinary accuracy of high-fidelity DNA polymerases. High-fidelity DNA polymerases, such as the enzyme responsible for the replication of bacteriophage T7 DNA, discriminate against similar substrates with an accuracy that approaches one error in a million base pairs while copying DNA at a rate of approximately 300 base pairs per second. When the polymerase does make an error, it stalls, giving time for the slower proofreading exonuclease to remove the mismatch so that the overall error frequency approaches one in a billion. Structural analysis reveals a large change in conformation after nucleotide binding from an open to a closed state. Kinetic analysis has shown that the substrate-induced structural change plays a key role in the discrimination between correct and incorrect base pairs by governing whether a nucleotide will be retained and incorporated or rapidly released.

摘要

本综述总结了我们目前对高保真DNA聚合酶极高准确性的结构、动力学和热力学基础的理解。高保真DNA聚合酶,例如负责噬菌体T7 DNA复制的酶,在以每秒约300个碱基对的速度复制DNA时,以接近百万碱基对中出现一个错误的准确性区分相似的底物。当聚合酶确实出现错误时,它会停顿下来,给速度较慢的校对核酸外切酶留出时间去除错配,从而使总体错误频率接近十亿分之一。结构分析揭示了核苷酸结合后从开放状态到闭合状态的构象发生了巨大变化。动力学分析表明,底物诱导的结构变化通过决定核苷酸是被保留并掺入还是迅速释放,在区分正确和错误碱基对中起关键作用。

相似文献

1
The kinetic and chemical mechanism of high-fidelity DNA polymerases.
Biochim Biophys Acta. 2010 May;1804(5):1041-8. doi: 10.1016/j.bbapap.2010.01.006. Epub 2010 Jan 15.
2
Substrate specificity and proposed structure of the proofreading complex of T7 DNA polymerase.
J Biol Chem. 2022 Mar;298(3):101627. doi: 10.1016/j.jbc.2022.101627. Epub 2022 Jan 22.
3
Conformational coupling in DNA polymerase fidelity.
Annu Rev Biochem. 1993;62:685-713. doi: 10.1146/annurev.bi.62.070193.003345.
4
Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading.
Phys Rev E. 2016 Apr;93:042420. doi: 10.1103/PhysRevE.93.042420. Epub 2016 Apr 29.
5
Fidelity of DNA replication-a matter of proofreading.
Curr Genet. 2018 Oct;64(5):985-996. doi: 10.1007/s00294-018-0820-1. Epub 2018 Mar 2.
9
Switching between Exonucleolysis and Replication by T7 DNA Polymerase Ensures High Fidelity.
Biophys J. 2017 Feb 28;112(4):575-583. doi: 10.1016/j.bpj.2016.12.044.
10
Role of a GAG hinge in the nucleotide-induced conformational change governing nucleotide specificity by T7 DNA polymerase.
J Biol Chem. 2011 Jan 14;286(2):1312-22. doi: 10.1074/jbc.M110.156737. Epub 2010 Oct 26.

引用本文的文献

1
NTPs compete in the active site of RNA polymerases I and II.
Biophys Chem. 2024 Nov;314:107302. doi: 10.1016/j.bpc.2024.107302. Epub 2024 Aug 3.
2
Replication of [AT/TA] Microsatellite Sequences by Human DNA Polymerase δ Holoenzymes Is Dependent on dNTP and RPA Levels.
Biochemistry. 2024 Apr 16;63(8):969-983. doi: 10.1021/acs.biochem.4c00006. Epub 2024 Mar 26.
4
An exonuclease-resistant chain-terminating nucleotide analogue targeting the SARS-CoV-2 replicase complex.
Nucleic Acids Res. 2024 Feb 9;52(3):1325-1340. doi: 10.1093/nar/gkad1194.
6
In crystallo observation of active site dynamics and transient metal ion binding within DNA polymerases.
Struct Dyn. 2023 Jun 15;10(3):034702. doi: 10.1063/4.0000187. eCollection 2023 May.
7
Pre-Steady-State Kinetic Characterization of an Antibiotic-Resistant Mutant of Staphylococcus aureus DNA Polymerase PolC.
Antimicrob Agents Chemother. 2023 Jun 15;67(6):e0157122. doi: 10.1128/aac.01571-22. Epub 2023 May 24.
8
Interfering with nucleotide excision by the coronavirus 3'-to-5' exoribonuclease.
Nucleic Acids Res. 2023 Jan 11;51(1):315-336. doi: 10.1093/nar/gkac1177.
9
Transient State Kinetics of Apicoplast DNA Polymerase Suggests the Involvement of Accessory Factors for Efficient and Accurate DNA Synthesis.
Biochemistry. 2022 Nov 1;61(21):2319-2333. doi: 10.1021/acs.biochem.2c00446. Epub 2022 Oct 17.
10
Interfering with nucleotide excision by the coronavirus 3'-to-5' exoribonuclease.
bioRxiv. 2022 Aug 11:2022.08.11.503614. doi: 10.1101/2022.08.11.503614.

本文引用的文献

1
Highly Precise Shape Mimicry by a Difluorotoluene Deoxynucleoside, a Replication-Competent Substitute for Thymidine.
Angew Chem Int Ed Engl. 1997 Jan 7;36(24):2825-2828. doi: 10.1002/anie.199728251.
2
Selective and Stable DNA Base Pairing without Hydrogen Bonds.
J Am Chem Soc. 1998;120(24):6191-6192. doi: 10.1021/ja9803310.
5
Mechanisms of DNA polymerases.
Chem Rev. 2009 Jul;109(7):2862-79. doi: 10.1021/cr800530b.
7
Role of induced fit in enzyme specificity: a molecular forward/reverse switch.
J Biol Chem. 2008 Sep 26;283(39):26297-301. doi: 10.1074/jbc.R800034200. Epub 2008 Jun 10.
8
A novel mechanism of selectivity against AZT by the human mitochondrial DNA polymerase.
Nucleic Acids Res. 2007;35(20):6973-83. doi: 10.1093/nar/gkm695. Epub 2007 Oct 16.
9
Real-time measurement of pyrophosphate release kinetics.
Anal Biochem. 2008 Jan 1;372(1):125-7. doi: 10.1016/j.ab.2007.08.004. Epub 2007 Aug 10.
10
Base pair hydrogen bonds are essential for proofreading selectivity by the human mitochondrial DNA polymerase.
J Biol Chem. 2008 May 23;283(21):14411-6. doi: 10.1074/jbc.M705006200. Epub 2007 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验