Suppr超能文献

T7 DNA聚合酶在外切核酸酶活性与复制之间的转换确保了高保真度。

Switching between Exonucleolysis and Replication by T7 DNA Polymerase Ensures High Fidelity.

作者信息

Hoekstra Tjalle P, Depken Martin, Lin Szu-Ning, Cabanas-Danés Jordi, Gross Peter, Dame Remus T, Peterman Erwin J G, Wuite Gijs J L

机构信息

Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands; LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, the Netherlands.

Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.

出版信息

Biophys J. 2017 Feb 28;112(4):575-583. doi: 10.1016/j.bpj.2016.12.044.

Abstract

DNA polymerase catalyzes the accurate transfer of genetic information from one generation to the next, and thus it is vitally important for replication to be faithful. DNA polymerase fulfills the strict requirements for fidelity by a combination of mechanisms: 1) high selectivity for correct nucleotide incorporation, 2) a slowing down of the replication rate after misincorporation, and 3) proofreading by excision of misincorporated bases. To elucidate the kinetic interplay between replication and proofreading, we used high-resolution optical tweezers to probe how DNA-duplex stability affects replication by bacteriophage T7 DNA polymerase. Our data show highly irregular replication dynamics, with frequent pauses and direction reversals as the polymerase cycles through the states that govern the mechanochemistry behind high-fidelity T7 DNA replication. We constructed a kinetic model that incorporates both existing biochemical data and the, to our knowledge, novel states we observed. We fit the model directly to the acquired pause-time and run-time distributions. Our findings indicate that the main pathway for error correction is DNA polymerase dissociation-mediated DNA transfer, followed by biased binding into the exonuclease active site. The number of bases removed by this proofreading mechanism is much larger than the number of erroneous bases that would be expected to be incorporated, ensuring a high-fidelity replication of the bacteriophage T7 genome.

摘要

DNA聚合酶催化遗传信息从一代到下一代的准确传递,因此复制的忠实性至关重要。DNA聚合酶通过多种机制的组合来满足保真度的严格要求:1)对正确核苷酸掺入的高选择性;2)错配掺入后复制速率的减慢;3)通过切除错配碱基进行校对。为了阐明复制和校对之间的动力学相互作用,我们使用高分辨率光镊来探究DNA双链稳定性如何影响噬菌体T7 DNA聚合酶的复制。我们的数据显示出高度不规则的复制动力学,随着聚合酶在控制高保真T7 DNA复制背后的机械化学的状态间循环,频繁出现停顿和方向反转。我们构建了一个动力学模型,该模型纳入了现有的生化数据以及据我们所知我们观察到的新状态。我们将该模型直接拟合到获取的停顿时间和运行时间分布上。我们的研究结果表明,纠错的主要途径是DNA聚合酶解离介导的DNA转移,随后偏向性结合到外切核酸酶活性位点。通过这种校对机制去除的碱基数远大于预期掺入的错误碱基数,从而确保噬菌体T7基因组的高保真复制。

相似文献

1
Switching between Exonucleolysis and Replication by T7 DNA Polymerase Ensures High Fidelity.
Biophys J. 2017 Feb 28;112(4):575-583. doi: 10.1016/j.bpj.2016.12.044.
3
Substrate specificity and proposed structure of the proofreading complex of T7 DNA polymerase.
J Biol Chem. 2022 Mar;298(3):101627. doi: 10.1016/j.jbc.2022.101627. Epub 2022 Jan 22.
4
Role of a GAG hinge in the nucleotide-induced conformational change governing nucleotide specificity by T7 DNA polymerase.
J Biol Chem. 2011 Jan 14;286(2):1312-22. doi: 10.1074/jbc.M110.156737. Epub 2010 Oct 26.
5
Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading.
Phys Rev E. 2016 Apr;93:042420. doi: 10.1103/PhysRevE.93.042420. Epub 2016 Apr 29.
7
Excessive excision of correct nucleotides during DNA synthesis explained by replication hurdles.
EMBO J. 2020 Mar 16;39(6):e103367. doi: 10.15252/embj.2019103367. Epub 2020 Feb 9.
8
The Replication System of Bacteriophage T7.
Enzymes. 2016;39:89-136. doi: 10.1016/bs.enz.2016.02.001. Epub 2016 Mar 28.

引用本文的文献

1
DNA polymerase actively and sequentially displaces single-stranded DNA-binding proteins.
Nat Commun. 2025 Aug 12;16(1):7431. doi: 10.1038/s41467-025-62531-1.
2
The POLγ Y951N patient mutation disrupts the switch between DNA synthesis and proofreading, triggering mitochondrial DNA instability.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2417477122. doi: 10.1073/pnas.2417477122. Epub 2025 Apr 16.
3
DNA Polymerase Locks Replication Fork Under Stress.
bioRxiv. 2024 Oct 10:2024.10.09.617451. doi: 10.1101/2024.10.09.617451.
4
Mapping fast DNA polymerase exchange during replication.
Nat Commun. 2024 Jun 22;15(1):5328. doi: 10.1038/s41467-024-49612-3.
5
Life under tension: the relevance of force on biological polymers.
Biophys Rep. 2024 Feb 29;10(1):48-56. doi: 10.52601/bpr.2023.230019.
6
Polγ coordinates DNA synthesis and proofreading to ensure mitochondrial genome integrity.
Nat Struct Mol Biol. 2023 Jun;30(6):812-823. doi: 10.1038/s41594-023-00980-2. Epub 2023 May 18.
7
Conformational Dynamics of DNA Polymerases Revealed at the Single-Molecule Level.
Front Mol Biosci. 2022 Feb 25;9:826593. doi: 10.3389/fmolb.2022.826593. eCollection 2022.
9
The nucleotide addition cycle of the SARS-CoV-2 polymerase.
Cell Rep. 2021 Aug 31;36(9):109650. doi: 10.1016/j.celrep.2021.109650. Epub 2021 Aug 17.
10
DNA replication: single-molecule manipulation data analysis and models.
Comput Struct Biotechnol J. 2021 Jun 24;19:3765-3778. doi: 10.1016/j.csbj.2021.06.032. eCollection 2021.

本文引用的文献

1
Tuning the Music: Acoustic Force Spectroscopy (AFS) 2.0.
Methods. 2016 Aug 1;105:26-33. doi: 10.1016/j.ymeth.2016.05.002. Epub 2016 May 6.
2
Acoustic force spectroscopy.
Nat Methods. 2015 Jan;12(1):47-50. doi: 10.1038/nmeth.3183. Epub 2014 Nov 24.
3
Active DNA unwinding dynamics during processive DNA replication.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8115-20. doi: 10.1073/pnas.1204759109. Epub 2012 May 9.
4
Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6555-60. doi: 10.1073/pnas.1200939109. Epub 2012 Apr 9.
5
Mechanism of strand displacement synthesis by DNA replicative polymerases.
Nucleic Acids Res. 2012 Jul;40(13):6174-86. doi: 10.1093/nar/gks253. Epub 2012 Mar 20.
6
Combining optical trapping, fluorescence microscopy and micro-fluidics for single molecule studies of DNA-protein interactions.
Phys Chem Chem Phys. 2011 Apr 28;13(16):7263-72. doi: 10.1039/c0cp02844d. Epub 2011 Mar 18.
7
Simultaneous single-molecule measurements of phage T7 replisome composition and function reveal the mechanism of polymerase exchange.
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3584-9. doi: 10.1073/pnas.1018824108. Epub 2011 Jan 18.
8
DNA conformational changes at the primer-template junction regulate the fidelity of replication by DNA polymerase.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):17980-5. doi: 10.1073/pnas.1012277107. Epub 2010 Oct 4.
10
Timing, coordination, and rhythm: acrobatics at the DNA replication fork.
J Biol Chem. 2010 Jun 18;285(25):18979-83. doi: 10.1074/jbc.R109.022939. Epub 2010 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验