Elazary Lior, Itti Laurent
Department of Computer Science, University of Southern California, Los Angeles, CA 90089-2520, USA.
Vision Res. 2010 Jun 25;50(14):1338-52. doi: 10.1016/j.visres.2010.01.002. Epub 2010 Jan 18.
Humans employ interacting bottom-up and top-down processes to significantly speed up search and recognition of particular targets. We describe a new model of attention guidance for efficient and scalable first-stage search and recognition with many objects (117,174 images of 1147 objects were tested, and 40 satellite images). Performance for recognition is on par or better than SIFT and HMAX, while being, respectively, 1500 and 279 times faster. The model is also used for top-down guided search, finding a desired object in a 5x5 search array within four attempts, and improving performance for finding houses in satellite images.
人类利用自下而上和自上而下的交互过程来显著加快对特定目标的搜索和识别。我们描述了一种用于高效且可扩展的多目标第一阶段搜索和识别的注意力引导新模型(测试了1147个物体的117,174张图像以及40张卫星图像)。识别性能与尺度不变特征变换(SIFT)和HMAX相当或更优,同时速度分别快1500倍和279倍。该模型还用于自上而下的引导搜索,在四次尝试内于5×5搜索阵列中找到所需物体,并提高在卫星图像中寻找房屋的性能。