Suppr超能文献

一种用于高效视觉搜索与识别的贝叶斯模型。

A Bayesian model for efficient visual search and recognition.

作者信息

Elazary Lior, Itti Laurent

机构信息

Department of Computer Science, University of Southern California, Los Angeles, CA 90089-2520, USA.

出版信息

Vision Res. 2010 Jun 25;50(14):1338-52. doi: 10.1016/j.visres.2010.01.002. Epub 2010 Jan 18.

Abstract

Humans employ interacting bottom-up and top-down processes to significantly speed up search and recognition of particular targets. We describe a new model of attention guidance for efficient and scalable first-stage search and recognition with many objects (117,174 images of 1147 objects were tested, and 40 satellite images). Performance for recognition is on par or better than SIFT and HMAX, while being, respectively, 1500 and 279 times faster. The model is also used for top-down guided search, finding a desired object in a 5x5 search array within four attempts, and improving performance for finding houses in satellite images.

摘要

人类利用自下而上和自上而下的交互过程来显著加快对特定目标的搜索和识别。我们描述了一种用于高效且可扩展的多目标第一阶段搜索和识别的注意力引导新模型(测试了1147个物体的117,174张图像以及40张卫星图像)。识别性能与尺度不变特征变换(SIFT)和HMAX相当或更优,同时速度分别快1500倍和279倍。该模型还用于自上而下的引导搜索,在四次尝试内于5×5搜索阵列中找到所需物体,并提高在卫星图像中寻找房屋的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验