Kemp Charles, Chang Kai-min K, Lombardi Luigi
Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Acta Psychol (Amst). 2010 Mar;133(3):216-33. doi: 10.1016/j.actpsy.2009.11.012. Epub 2010 Jan 18.
This paper considers a family of inductive problems where reasoners must identify familiar categories or features on the basis of limited information. Problems of this kind are encountered, for example, when word learners acquire novel labels for pre-existing concepts. We develop a probabilistic model of identification and evaluate it in three experiments. Our first two experiments explore problems where a single category or feature must be identified, and our third experiment explores cases where participants must combine several pieces of information in order to simultaneously identify a category and a feature. Humans readily solve all of these problems, and we show that our model accounts for human inferences better than several alternative approaches.
本文考虑了一类归纳问题,即推理者必须根据有限信息识别熟悉的类别或特征。例如,当词汇学习者为已有的概念获取新标签时,就会遇到这类问题。我们开发了一种识别概率模型,并在三个实验中对其进行评估。我们的前两个实验探索了必须识别单个类别或特征的问题,第三个实验探索了参与者必须整合多条信息以便同时识别一个类别和一个特征的情况。人类能够轻松解决所有这些问题,并且我们表明,我们的模型比其他几种替代方法更能解释人类的推理过程。