Suppr超能文献

类别学习中的诊断性与典型性:推理学习与分类学习的比较

Diagnosticity and prototypicality in category learning: a comparison of inference learning and classification learning.

作者信息

Chin-Parker Seth, Ross Brian H

机构信息

Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

J Exp Psychol Learn Mem Cogn. 2004 Jan;30(1):216-26. doi: 10.1037/0278-7393.30.1.216.

Abstract

Category knowledge allows for both the determination of category membership and an understanding of what the members of a category are like. Diagnostic information is used to determine category membership; prototypical information reflects the most likely features given category membership. Two experiments examined 2 means of category learning, classification and inference learning, in terms of sensitivity to diagnostic and prototypical information. Classification learners were highly sensitive to diagnostic features but not sensitive to nondiagnostic, but prototypical, features. Inference learners were less sensitive to the diagnostic features than were classification learners and were also sensitive to the nondiagnostic, prototypical, features. Discussion focuses on aspects of the 2 learning tasks that might lead to this differential sensitivity and the implications for learning real-world categories.

摘要

类别知识既有助于确定类别归属,也有助于理解类别的成员是什么样的。诊断信息用于确定类别归属;原型信息反映了给定类别归属时最可能的特征。两项实验从对诊断信息和原型信息的敏感性方面,考察了类别学习的两种方式,即分类学习和推理学习。分类学习者对诊断特征高度敏感,但对非诊断性但具有原型性的特征不敏感。推理学习者对诊断特征的敏感性低于分类学习者,并且对非诊断性的原型特征也敏感。讨论聚焦于这两种学习任务中可能导致这种差异敏感性的方面,以及对学习现实世界类别产生的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验