Department of Chemistry, Pusan National University, Busan 609-735, South Korea.
Biosens Bioelectron. 2010 Mar 15;25(7):1735-41. doi: 10.1016/j.bios.2009.12.020. Epub 2009 Dec 24.
Poly-5,2':5',2''-terthiophen-3'-carboxylic acid (polyTTCA) and poly-Fe(III)-[N,N'-bis[4-(5,2':5',2''-terthien-3'-yl)salicyliden]-1,2-ethanediamine] (polyFeTSED) were synthesized and electrochemically polymerized on an Au surface for use as mediators and catalysts for a biofuel cell. The atomic force microscopy (AFM) images of (a) the TTCA homopolymer (polyTTCA) and (b) the TTCA-FeTSED copolymer (poly(TTCA-FeTSED)) layers show a nanoparticle structure. The enzymes (glucose oxidase (GOx) or horseradish peroxidase (HRP)) were immobilized onto the conducting polymer layer through covalent bond formation, which allowed for direct electron transfer processes of the enzymes. A quartz crystal microbalance (QCM) revealed that the surface coverages of GOx and HRP were 4.21 x 10(-12)M and 9.65 x 10(-12)M, respectively. The anode with immobilized GOx and the cathode with immobilized HRP were used as model enzyme systems in biofuel cells for glucose and H(2)O(2) detection, respectively. The biofuel cell composed of the GOx/polyTTCA/Au and the HRP/poly(TTCA-FeTSED)/Au electrodes was assembled and examined for cell performance. The copolymer of polyFeTSED complex with polyTTCA revealed a catalytic activity for the electrochemical reduction of H(2)O(2) and resulted in approximately a sevenfold increase in the power density of the biofuel cell over that of polyTTCA itself. Moreover, the conjugated polymers extend the biofuel cell lifetime to 4 months through the stabilization of immobilized enzymes. The biofuel cell operated in a solution containing glucose and anode-produced H(2)O(2) generated an open-circuit voltage of approximately 366.0 mV, while the maximum electrical power density extracted from the cell was 5.12 microW cm(-2) at an external optimal load of 25.0 k Omega.
聚 5,2':5',2''-三噻吩-3'-羧酸(polyTTCA)和聚-Fe(III)-[N,N'-双[4-(5,2':5',2''-三噻吩-3'-基)水杨醛]-1,2-乙二胺](polyFeTSED)被合成并在 Au 表面电化学聚合,用作生物燃料电池的介体和催化剂。原子力显微镜(AFM)图像显示(a)TTCA 均聚物(polyTTCA)和(b)TTCA-FeTSED 共聚物(poly(TTCA-FeTSED))层呈现纳米颗粒结构。酶(葡萄糖氧化酶(GOx)或辣根过氧化物酶(HRP))通过共价键形成固定在导电聚合物层上,从而允许酶进行直接电子转移过程。石英晶体微天平(QCM)显示 GOx 和 HRP 的表面覆盖率分别为 4.21 x 10(-12)M 和 9.65 x 10(-12)M。固定化 GOx 的阳极和固定化 HRP 的阴极分别用作生物燃料电池中葡萄糖和 H(2)O(2)检测的模型酶系统。由 GOx/polyTTCA/Au 和 HRP/poly(TTCA-FeTSED)/Au 电极组成的生物燃料电池组装并进行了细胞性能测试。聚 FeTSED 配合物与 polyTTCA 的共聚物显示出对 H(2)O(2)电化学还原的催化活性,使生物燃料电池的功率密度相对于 polyTTCA 本身增加了约七倍。此外,共轭聚合物通过稳定固定化酶将生物燃料电池的寿命延长至 4 个月。生物燃料电池在含有葡萄糖和阳极产生的 H(2)O(2)的溶液中运行,开路电压约为 366.0 mV,而从电池中提取的最大电功率密度在外部最佳负载为 25.0 k Omega 时为 5.12 微 W cm(-2)。