Suppr超能文献

基于电沉积酶、导电聚合物和氧化还原介体的葡萄糖/O2 驱动的微型生物燃料电池:制备、表征及在人血清中的性能。

Micro-biofuel cell powered by glucose/O2 based on electro-deposition of enzyme, conducting polymer and redox mediators: preparation, characterization and performance in human serum.

机构信息

Department of Metallurgy and Materials Engineering (MTM), KU Leuven, Heverlee, Belgium.

出版信息

Biosens Bioelectron. 2010 Feb 15;25(6):1474-80. doi: 10.1016/j.bios.2009.11.001. Epub 2009 Nov 18.

Abstract

In this study we report a new simple process to manufacture a biofuel cell consisting of a glucose oxidase (GOx) based anode and a laccase (LAc) based cathode. The process is based on the electro-deposition of the enzymes, conducting polymer and redox mediators from ultrapure water at a potential of 4V vs. AgCl/Ag. Contrary to the conventional electro-deposition from high ionic strength (buffer solution) at low applied potential (1V vs. AgCl/Ag) where only thin films could be deposited, leading to BFC with moderate power, the electro-deposition from ultrapure water at 4V allows the growth of thick films leading to BFC with high power output. It was observed that the combination of polypyrrole (PPy), with ferrocenium hexafluorophosphate (FHFP) and pyrroloquinoline quinone (PQQ) to be appropriate for the electron transfer at the GOx bioanode, while the combination of polypyrrole with bis-(bipyridine)-(5-amino-phenanthroline) ruthenium bis (hexafluorophosphate)(RuPy) and 4,4-sulfonyldiphenol (SDP) to be effective for the electron transfer at the LAc biocathode. The working biofuel cell was studied at 37 degrees C in phosphate buffer solution at pH 7.4 containing 10 mM glucose and in human serum. Under these conditions, the maximum power density reached 3.1 microW mm(-2) at a cell voltage of 0.28 V in buffer solution and 1.6 microW mm(-2) at a cell voltage of 0.21 V in human serum. This study offers a new route to the development of enzymatic BFCs with high performance and provides information on enzymatic BFCs as in vivo power sources.

摘要

在这项研究中,我们报告了一种新的简单工艺,用于制造由葡萄糖氧化酶(GOx)为阳极和漆酶(LAc)为阴极组成的生物燃料电池。该工艺基于在 4V 对 AgCl/Ag 的电势下从超纯水中电沉积酶、导电聚合物和氧化还原介质。与传统的从高离子强度(缓冲溶液)在低施加电势(1V 对 AgCl/Ag)电沉积相比,只能沉积薄膜,导致 BFC 功率适中,从超纯水电沉积在 4V 下允许厚膜的生长,导致 BFC 具有高功率输出。观察到聚吡咯(PPy)与六氟磷酸铁(FHFP)和吡咯并喹啉醌(PQQ)结合适合在 GOx 生物阳极的电子转移,而聚吡咯与双(联吡啶)-(5-氨基-菲咯啉)钌双(六氟磷酸盐)(RuPy)和 4,4-磺酰二苯酚(SDP)的组合对 LAc 生物阴极的电子转移有效。工作生物燃料电池在 37°C 下在 pH 7.4 的磷酸盐缓冲溶液中进行研究,其中含有 10mM 葡萄糖和人血清。在这些条件下,在缓冲液中细胞电压为 0.28V 时最大功率密度达到 3.1μWmm(-2),在人血清中细胞电压为 0.21V 时达到 1.6μWmm(-2)。这项研究为高性能酶促 BFC 的开发提供了新途径,并为作为体内电源的酶促 BFC 提供了信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验