Suppr超能文献

布拉氏固氮菌(Bradyrhizobium sp. strain JS329)对 5-硝基邻氨基苯甲酸的生物降解。

Biodegradation of 5-nitroanthranilic acid by Bradyrhizobium sp. strain JS329.

机构信息

School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332-0512, USA.

出版信息

Appl Environ Microbiol. 2010 Mar;76(5):1417-22. doi: 10.1128/AEM.02816-09. Epub 2010 Jan 15.

Abstract

Biodegradation of synthetic compounds has been studied extensively, but the metabolic diversity required for catabolism of many natural compounds has not been addressed. 5-Nitroanthranilic acid (5NAA), produced in soil by Streptomyces scabies, is also the starting material for synthetic dyes and other nitroaromatic compounds. Bradyrhizobium JS329 was isolated from soil by selective enrichment with 5NAA. When grown on 5NAA, the isolate released stoichiometric amounts of nitrite and half of the stoichiometric amounts of ammonia. Enzyme assays indicate that the initial step in 5NAA degradation is an unusual hydrolytic deamination for formation of 5-nitrosalicylic acid (5NSA). Cloning and heterologous expression revealed the genes that encode 5NAA deaminase (naaA) and the 5NSA dioxygenase (naaB) that cleaves the aromatic ring of 5NSA without prior removal of the nitro group. The results provide the first clear evidence for the initial steps in biodegradation of amino-nitroaromatic compounds and reveal a novel deamination reaction for aromatic amines.

摘要

人们对合成化合物的生物降解进行了广泛的研究,但许多天然化合物的分解代谢所需的代谢多样性尚未得到解决。5-硝基邻氨基苯甲酸(5NAA)是由疮痂链霉菌在土壤中产生的,也是合成染料和其他硝基芳烃化合物的起始原料。通过用 5NAA 进行选择性富集,从土壤中分离出 Bradyrhizobium JS329。当在 5NAA 上生长时,该分离物释放出化学计量的亚硝酸盐和一半化学计量的氨。酶分析表明,5NAA 降解的第一步是一个不寻常的水解脱氨反应,生成 5-硝基水杨酸(5NSA)。克隆和异源表达揭示了编码 5NAA 脱氨酶(naaA)和 5NSA 双加氧酶(naaB)的基因,该酶在不先去除硝基的情况下切割 5NSA 的芳环。这些结果为氨基-硝基芳烃化合物生物降解的初始步骤提供了第一个明确的证据,并揭示了一种新型的芳香胺脱氨反应。

相似文献

1
Biodegradation of 5-nitroanthranilic acid by Bradyrhizobium sp. strain JS329.
Appl Environ Microbiol. 2010 Mar;76(5):1417-22. doi: 10.1128/AEM.02816-09. Epub 2010 Jan 15.
3
Enzymatic hydrolysis by transition-metal-dependent nucleophilic aromatic substitution.
Nat Chem Biol. 2016 Dec;12(12):1031-1036. doi: 10.1038/nchembio.2191. Epub 2016 Oct 3.
4
Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China.
Syst Appl Microbiol. 2013 Mar;36(2):101-5. doi: 10.1016/j.syapm.2012.10.009. Epub 2013 Jan 5.
5
Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations.
Int J Syst Evol Microbiol. 2004 Jul;54(Pt 4):1271-1275. doi: 10.1099/ijs.0.02971-0.
6
Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea.
Int J Syst Evol Microbiol. 2011 Oct;61(Pt 10):2496-2502. doi: 10.1099/ijs.0.027110-0. Epub 2010 Nov 26.
8
Isolation and characterization of Bradyrhizobium sp. 224 capable of degrading sulfanilic acid.
Biosci Biotechnol Biochem. 2016 Aug;80(8):1663-5. doi: 10.1080/09168451.2016.1176521. Epub 2016 Apr 25.
9
Wild peanut Arachis duranensis are nodulated by diverse and novel Bradyrhizobium species in acid soils.
Syst Appl Microbiol. 2014 Oct;37(7):525-32. doi: 10.1016/j.syapm.2014.05.004. Epub 2014 May 27.

引用本文的文献

1
Crystal structure of the monocupin ring-cleaving dioxygenase 5-nitrosalicylate 1,2-dioxygenase from Bradyrhizobium sp.
Acta Crystallogr D Struct Biol. 2023 Jul 1;79(Pt 7):632-640. doi: 10.1107/S2059798323004199. Epub 2023 Jun 16.
2
Benzo[A]Pyrene Biodegradation by Multiple and Individual Mesophilic Bacteria under Axenic Conditions and in Soil Samples.
Int J Environ Res Public Health. 2023 Jan 19;20(3):1855. doi: 10.3390/ijerph20031855.
3
A Biomimetic System for Studying Salicylate Dioxygenase.
ACS Symp Ser Am Chem Soc. 2019 Jan 1;1317(4):71-83. doi: 10.1021/bk-2019-1317.ch004. Epub 2019 Jul 12.
4
Enzymatic hydrolysis by transition-metal-dependent nucleophilic aromatic substitution.
Nat Chem Biol. 2016 Dec;12(12):1031-1036. doi: 10.1038/nchembio.2191. Epub 2016 Oct 3.
5
Implications of Limited Thermophilicity of Nitrite Reduction for Control of Sulfide Production in Oil Reservoirs.
Appl Environ Microbiol. 2016 Jun 30;82(14):4190-4199. doi: 10.1128/AEM.00599-16. Print 2016 Jul 15.
6
Bacterial degradation of monocyclic aromatic amines.
Front Microbiol. 2015 Aug 18;6:820. doi: 10.3389/fmicb.2015.00820. eCollection 2015.
7
Aerobic biodegradation of 2,4-Dinitroanisole by Nocardioides sp. strain JS1661.
Appl Environ Microbiol. 2014 Dec;80(24):7725-31. doi: 10.1128/AEM.02752-14. Epub 2014 Oct 3.
8
Aerobic degradation of N-methyl-4-nitroaniline (MNA) by Pseudomonas sp. strain FK357 isolated from soil.
PLoS One. 2013 Oct 8;8(10):e75046. doi: 10.1371/journal.pone.0075046. eCollection 2013.
9
Metabolism of 2-chloro-4-nitroaniline via novel aerobic degradation pathway by Rhodococcus sp. strain MB-P1.
PLoS One. 2013 Apr 17;8(4):e62178. doi: 10.1371/journal.pone.0062178. Print 2013.

本文引用的文献

1
CDD: specific functional annotation with the Conserved Domain Database.
Nucleic Acids Res. 2009 Jan;37(Database issue):D205-10. doi: 10.1093/nar/gkn845. Epub 2008 Nov 4.
2
Genome sequence of the chemolithoautotrophic bacterium Oligotropha carboxidovorans OM5T.
J Bacteriol. 2008 Aug;190(15):5531-2. doi: 10.1128/JB.00614-08. Epub 2008 Jun 6.
3
Biodegradation of 3-nitrotyrosine by Burkholderia sp. strain JS165 and Variovorax paradoxus JS171.
Appl Environ Microbiol. 2006 Feb;72(2):1040-4. doi: 10.1128/AEM.72.2.1040-1044.2006.
4
Nitrosubstituted aromatic compounds as nitrogen source for bacteria.
Appl Environ Microbiol. 1987 Jan;53(1):208-10. doi: 10.1128/aem.53.1.208-210.1987.
7
8
Isolation of a novel, phosphate-activated glutaminase from Bacillus pasteurii.
FEMS Microbiol Lett. 2002 Jan 2;206(1):63-7. doi: 10.1111/j.1574-6968.2002.tb10987.x.
9
Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans.
J Bacteriol. 2001 Dec;183(23):6936-42. doi: 10.1128/JB.183.23.6936-6942.2001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验