Suppr超能文献

磷酸钙正向调节谷氨酸棒杆菌β-酮戊二酸途径的 pcaHG。

PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum.

机构信息

State Key Laboratory of Microbial Resources, Beijing 100101, People's Republic of China.

出版信息

J Bacteriol. 2010 Mar;192(6):1565-72. doi: 10.1128/JB.01338-09. Epub 2010 Jan 15.

Abstract

We identified a new regulator, PcaO, which is involved in regulation of the protocatechuate (PCA) branch of the beta-ketoadipate pathway in Corynebacterium glutamicum. PcaO is an atypical large ATP-binding LuxR family (LAL)-type regulator and does not have a Walker A motif. A mutant of C. glutamicum in which pcaO was disrupted (RES167DeltapcaO) was unable to grow on PCA, and growth on PCA was restored by complementation with pcaO. Both an enzymatic assay of PCA 3,4-dioxygenase activity (encoded by pcaHG) and transcriptional analysis of pcaHG by reverse transcription-PCR revealed that PcaO positively regulated pcaHG. A promoter-LacZ transcriptional fusion assay suggested that PcaO interacted with the sequence upstream of pcaHG. Electrophoretic mobility shift assay (EMSA) analysis indicated that an imperfect palindromic sequence ((-78)AACCCCTGACCTTCGGGGTT(-59)) that was located upstream of the -35 region of the pcaHG promoter was essential for PcaO regulation. DNase I footprinting showed that this imperfect palindrome was protected from DNase I digestion. Site-directed mutation and EMSA tests revealed that this palindrome sequence was essential for PcaO binding to the DNA fragment. In vitro EMSA results showed that ATP weakened the binding between PcaO and its target sequence but ADP strengthened this binding, while the effect of protocatechuate on PcaO binding was dependent on the protocatechuate concentration.

摘要

我们鉴定了一个新的调控因子 PcaO,它参与棒杆菌属谷氨酸的分支的β-酮己二酸途径中邻苯二酚的调节。PcaO 是一个非典型的大型 ATP 结合 LuxR 家族(LAL)-型调控因子,没有 Walker A 基序。缺失 pcaO 的谷氨酸棒杆菌突变体(RES167DeltapcaO)不能在 PCA 上生长,而通过 pcaO 的互补恢复了 PCA 上的生长。PCA 3,4-加双氧酶活性的酶测定(由 pcaHG 编码)和通过反转录-PCR 的 pcaHG 的转录分析都表明 PcaO 正向调节 pcaHG。启动子-LacZ 转录融合测定表明 PcaO 与 pcaHG 上游序列相互作用。电泳迁移率变动分析(EMSA)分析表明,位于 pcaHG 启动子-35 区域上游的不完美回文序列((-78)AACCCCTGACCTTCGGGGTT(-59))对于 PcaO 调节至关重要。DNase I 足迹分析表明,这个不完美的回文序列受到 DNase I 消化的保护。定点突变和 EMSA 测试表明,该回文序列对于 PcaO 与 DNA 片段的结合是必不可少的。体外 EMSA 结果表明,ATP 削弱了 PcaO 与其靶序列之间的结合,但 ADP 加强了这种结合,而邻苯二酚对 PcaO 结合的影响取决于邻苯二酚的浓度。

相似文献

1
PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum.
J Bacteriol. 2010 Mar;192(6):1565-72. doi: 10.1128/JB.01338-09. Epub 2010 Jan 15.
3
Involvement of the global regulator GlxR in 3-hydroxybenzoate and gentisate utilization by Corynebacterium glutamicum.
Appl Environ Microbiol. 2014 Jul;80(14):4215-25. doi: 10.1128/AEM.00290-14. Epub 2014 May 2.
8
Global proteome survey of protocatechuate- and glucose-grown Corynebacterium glutamicum reveals multiple physiological differences.
J Proteomics. 2012 May 17;75(9):2649-59. doi: 10.1016/j.jprot.2012.03.005. Epub 2012 Mar 17.

引用本文的文献

1
Improving growth properties of Corynebacterium glutamicum by implementing an iron-responsive protocatechuate biosynthesis.
Microb Biotechnol. 2023 May;16(5):1041-1053. doi: 10.1111/1751-7915.14244. Epub 2023 Mar 11.
3
Microbial single-cell growth response at defined carbon limiting conditions.
RSC Adv. 2019 May 7;9(25):14040-14050. doi: 10.1039/c9ra02454a.
4
Physiological Response of to Indole.
Microorganisms. 2020 Dec 8;8(12):1945. doi: 10.3390/microorganisms8121945.
5
Isolation and characterization marine bacteria capable of degrading lignin-derived compounds.
PLoS One. 2020 Oct 7;15(10):e0240187. doi: 10.1371/journal.pone.0240187. eCollection 2020.
6
Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum.
J Biol Chem. 2016 Mar 18;291(12):6583-94. doi: 10.1074/jbc.M115.695320. Epub 2016 Jan 27.
7
Variability in subpopulation formation propagates into biocatalytic variability of engineered Pseudomonas putida strains.
Front Microbiol. 2015 Oct 1;6:1042. doi: 10.3389/fmicb.2015.01042. eCollection 2015.
8
Artificial oxidative stress-tolerant Corynebacterium glutamicum.
AMB Express. 2014 Mar 18;4:15. doi: 10.1186/s13568-014-0015-1. eCollection 2014.
9
Comprehensive discovery and characterization of small RNAs in Corynebacterium glutamicum ATCC 13032.
BMC Genomics. 2013 Oct 19;14(1):714. doi: 10.1186/1471-2164-14-714.
10
Study of PcaV from Streptomyces coelicolor yields new insights into ligand-responsive MarR family transcription factors.
Nucleic Acids Res. 2013 Apr 1;41(6):3888-900. doi: 10.1093/nar/gkt009. Epub 2013 Feb 8.

本文引用的文献

4
CoryneRegNet 4.0 - A reference database for corynebacterial gene regulatory networks.
BMC Bioinformatics. 2007 Nov 6;8:429. doi: 10.1186/1471-2105-8-429.
5
Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum.
Microbiology (Reading). 2007 Mar;153(Pt 3):857-865. doi: 10.1099/mic.0.2006/002501-0.
7
Multiple-level regulation of genes for protocatechuate degradation in Acinetobacter baylyi includes cross-regulation.
Appl Environ Microbiol. 2007 Jan;73(1):232-42. doi: 10.1128/AEM.01608-06. Epub 2006 Nov 3.
9
Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum.
Appl Environ Microbiol. 2006 Nov;72(11):7238-45. doi: 10.1128/AEM.01494-06. Epub 2006 Sep 8.
10
Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti.
Appl Environ Microbiol. 2006 Aug;72(8):5403-13. doi: 10.1128/AEM.00580-06.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验