Suppr超能文献

谷氨酸棒杆菌间苯二酚分解代谢途径的遗传特征分析。

Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum.

作者信息

Huang Yan, Zhao Ke-Xin, Shen Xi-Hui, Chaudhry Muhammad Tausif, Jiang Cheng-Ying, Liu Shuang-Jiang

机构信息

Institute of Microbiology, Chinese Academy of Sciences, ZhongGuanCun, Haidian, Beijing 100080, People's Republic of China.

出版信息

Appl Environ Microbiol. 2006 Nov;72(11):7238-45. doi: 10.1128/AEM.01494-06. Epub 2006 Sep 8.

Abstract

Corynebacterium glutamicum grew on resorcinol as a sole source of carbon and energy. By genome-wide data mining, two gene clusters, designated NCgl1110-NCgl1113 and NCgl2950-NCgl2953, were proposed to encode putative proteins involved in resorcinol catabolism. Deletion of the NCgl2950-NCgl2953 gene cluster did not result in any observable phenotype changes. Disruption and complementation of each gene at NCgl1110-NCgl1113, NCgl2951, and NCgl2952 indicated that these genes were involved in resorcinol degradation. Expression of NCgl1112, NCgl1113, and NCgl2951 in Escherichia coli revealed that NCgl1113 and NCgl2951 both coded for hydroxyquinol 1,2-dioxygenases and NCgl1112 coded for maleylacetate reductases. NCgl1111 encoded a putative monooxygenase, but this putative hydroxylase was very different from previously functionally identified hydroxylases. Cloning and expression of NCgl1111 in E. coli revealed that NCgl1111 encoded a resorcinol hydroxylase that needs NADPH as a cofactor. E. coli cells containing Ncgl1111 and Ncgl1113 sequentially converted resorcinol into maleylacetate. NCgl1110 and NCgl2950 both encoded putative TetR family repressors, but only NCgl1110 was transcribed and functional. NCgl2953 encoded a putative transporter, but disruption of this gene did not affect resorcinol degradation by C. glutamicum. The function of NCgl2953 remains unclear.

摘要

谷氨酸棒杆菌能够以间苯二酚作为唯一碳源和能源生长。通过全基因组数据挖掘,提出了两个基因簇,分别命名为NCgl1110 - NCgl1113和NCgl2950 - NCgl2953,它们被认为编码参与间苯二酚分解代谢的假定蛋白质。删除NCgl2950 - NCgl2953基因簇并未导致任何可观察到的表型变化。对NCgl1110 - NCgl1113、NCgl2951和NCgl2952中的每个基因进行破坏和互补实验表明,这些基因参与间苯二酚的降解。NCgl1112、NCgl1113和NCgl2951在大肠杆菌中的表达显示,NCgl1113和NCgl2951均编码羟基喹啉1,2 - 双加氧酶,而NCgl1112编码马来酰乙酸还原酶。NCgl1111编码一种假定的单加氧酶,但这种假定的羟化酶与先前功能鉴定的羟化酶有很大不同。NCgl1111在大肠杆菌中的克隆和表达表明,NCgl1111编码一种需要NADPH作为辅因子的间苯二酚羟化酶。含有Ncgl1111和Ncgl1113的大肠杆菌细胞依次将间苯二酚转化为马来酰乙酸。NCgl1110和NCgl2950均编码假定的TetR家族阻遏物,但只有NCgl1110被转录并具有功能。NCgl2953编码一种假定的转运蛋白,但破坏该基因并不影响谷氨酸棒杆菌对间苯二酚的降解。NCgl2953的功能仍不清楚。

相似文献

1
Genetic characterization of the resorcinol catabolic pathway in Corynebacterium glutamicum.
Appl Environ Microbiol. 2006 Nov;72(11):7238-45. doi: 10.1128/AEM.01494-06. Epub 2006 Sep 8.
2
4
The ncgl1108 (PheP (Cg)) gene encodes a new L-Phe transporter in Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2011 Jun;90(6):2005-13. doi: 10.1007/s00253-011-3245-z. Epub 2011 Apr 6.
6
FarR, a putative regulator of amino acid metabolism in Corynebacterium glutamicum.
Appl Microbiol Biotechnol. 2007 Sep;76(3):625-32. doi: 10.1007/s00253-007-0929-5. Epub 2007 May 5.
7
Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum.
Microbiology (Reading). 2007 Mar;153(Pt 3):857-865. doi: 10.1099/mic.0.2006/002501-0.

引用本文的文献

1
Physiological Response of to Indole.
Microorganisms. 2020 Dec 8;8(12):1945. doi: 10.3390/microorganisms8121945.
2
Bicistronic expression strategy for high-level expression of recombinant proteins in .
Eng Life Sci. 2017 Aug 14;17(10):1118-1125. doi: 10.1002/elsc.201700087. eCollection 2017 Oct.
3
Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes.
PLoS One. 2016 Nov 28;11(11):e0166851. doi: 10.1371/journal.pone.0166851. eCollection 2016.
4
Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum.
J Biol Chem. 2016 Mar 18;291(12):6583-94. doi: 10.1074/jbc.M115.695320. Epub 2016 Jan 27.
5
γ-Resorcylate catabolic-pathway genes in the soil actinomycete Rhodococcus jostii RHA1.
Appl Environ Microbiol. 2015 Nov;81(21):7656-65. doi: 10.1128/AEM.02422-15. Epub 2015 Aug 28.
8
Phenylacetic acid catabolism and its transcriptional regulation in Corynebacterium glutamicum.
Appl Environ Microbiol. 2012 Aug;78(16):5796-804. doi: 10.1128/AEM.01588-12. Epub 2012 Jun 8.
10
PcaO positively regulates pcaHG of the beta-ketoadipate pathway in Corynebacterium glutamicum.
J Bacteriol. 2010 Mar;192(6):1565-72. doi: 10.1128/JB.01338-09. Epub 2010 Jan 15.

本文引用的文献

2
Genetic and genomic insights into the role of benzoate-catabolic pathway redundancy in Burkholderia xenovorans LB400.
Appl Environ Microbiol. 2006 Jan;72(1):585-95. doi: 10.1128/AEM.72.1.585-595.2006.
3
Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6.
Appl Environ Microbiol. 2005 Nov;71(11):6538-44. doi: 10.1128/AEM.71.11.6538-6544.2005.
4
5
The TetR family of transcriptional repressors.
Microbiol Mol Biol Rev. 2005 Jun;69(2):326-56. doi: 10.1128/MMBR.69.2.326-356.2005.
6
Identification of AcnR, a TetR-type repressor of the aconitase gene acn in Corynebacterium glutamicum.
J Biol Chem. 2005 Jan 7;280(1):585-95. doi: 10.1074/jbc.M408271200. Epub 2004 Oct 19.
9
Cloning and characterization of a gene cluster for geldanamycin production in Streptomyces hygroscopicus NRRL 3602.
FEMS Microbiol Lett. 2003 Jan 28;218(2):223-30. doi: 10.1016/S0378-1097(02)01148-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验