Polar BioCenter, Korea Polar Research Institute, KORDI, Incheon, 406-840, South Korea.
Appl Microbiol Biotechnol. 2010 May;86(6):1841-7. doi: 10.1007/s00253-009-2418-5. Epub 2010 Jan 15.
Escherichia coli cells expressing Rhodococcus DK17 o-xylene dioxygenase genes were used for bioconversion of m-xylene. Gas chromatography-mass spectrometry analysis of the oxidation products detected 3-methylbenzylalcohol and 2,4-dimethylphenol in the ratio 9:1. Molecular modeling suggests that o-xylene dioxygenase can hold xylene isomers at a kink region between alpha6 and alpha7 helices of the active site and alpha9 helix covers the substrates. m-Xylene is unlikely to locate at the active site with a methyl group facing the kink region because this configuration would not fit within the substrate-binding pocket. The m-xylene molecule can flip horizontally to expose the meta-position methyl group to the catalytic motif. In this configuration, 3-methylbenzylalcohol could be formed, presumably due to the meta effect. Alternatively, the m-xylene molecule can rotate counterclockwise, allowing the catalytic motif to hydroxylate at C-4 yielding 2,4-dimethylphenol. Site-directed mutagenesis combined with structural and functional analyses suggests that the alanine-218 and the aspartic acid-262 in the alpha7 and the alpha9 helices play an important role in positioning m-xylene, respectively.
表达红球菌 DK17 邻二甲苯双加氧酶基因的大肠杆菌细胞被用于间二甲苯的生物转化。氧化产物的气相色谱-质谱分析检测到 3-甲基苄醇和 2,4-二甲基苯酚的比例为 9:1。分子建模表明,邻二甲苯双加氧酶可以在活性位点的α6 和 α7 螺旋之间的扭结区域固定二甲苯异构体,并且α9 螺旋覆盖底物。间二甲苯不太可能与甲基基团朝向扭结区域的位置位于活性位点,因为这种构象不会适合于底物结合口袋。间二甲苯分子可以水平翻转,使间位甲基基团暴露于催化基序。在此构型中,可以形成 3-甲基苄醇,可能是由于间位效应。或者,间二甲苯分子可以逆时针旋转,允许催化基序在 C-4 位羟基化生成 2,4-二甲基苯酚。定点突变结合结构和功能分析表明,α7 和 α9 螺旋中的丙氨酸-218 和天冬氨酸-262 分别在定位间二甲苯方面发挥重要作用。