Suppr超能文献

初步评估一种联合 microPET-MR 系统。

Preliminary evaluation of a combined microPET-MR system.

机构信息

Wolfson Brain Imaging Centre University of Cambridge Box 65, Addenbrookes Hospital Cambridge CB2 2QQ, UK.

出版信息

Technol Cancer Res Treat. 2010 Feb;9(1):53-60. doi: 10.1177/153303461000900106.

Abstract

There are many motivations for adding simultaneously acquired MR images to PET scanning. The most straight forward are, superior registration of MR and PET images, the addition of morphological detail when there is non-rigid motion and for pre-clinical studies simultaneous imaging could lead to a significant reduction in the time that animals are required to be anesthetised. In addition simultaneous MR has the potential to provide accurate motion correction for PET image reconstruction. For functional imaging simultaneous acquisition is required to assess the subject in the same physiological state, such as acute stroke studies. The elimination of the additional radiation associated with combining CT with PET, by providing anatomic detail with MR, would be a crucial advantage for cancer screening. Combining the two instruments necessitates some engineering tradeoffs, especially associated with the use of the highly developed photomultiplier tube (PMT) used for light amplification, because of its incompatibility with strong magnetic fields. Our approach is to provide a split in the magnet and gradients to locate the magnetic sensitive components, the PMTs, in regions of low magnetic field, leaving only the essential PET components, the scintillator blocks, in the strong magnetic field region. The crystals are coupled to the PMTs by extending the optical fibres. A further advantage accrues by moving the PET electronics out of the region seen by the MR radio-frequency (RF) and gradient coils as electromagnetic interference effects between the PET and MR systems, which could cause artefacts in either modality, are eliminated. Here we describe a preliminary evaluation of the system, which is essentially a microPET Focus-120 located in a 1T split magnet, and compare its performance to previous microPET instruments.

摘要

同时获取 MR 图像和 PET 扫描有很多动机。最直接的动机是,MR 和 PET 图像的配准更好,当存在非刚性运动时,添加形态学细节,并且对于临床前研究,同时成像可以显著减少动物需要麻醉的时间。此外,同时进行 MR 扫描有可能为 PET 图像重建提供准确的运动校正。对于功能成像,需要同时采集以评估处于相同生理状态的受试者,例如急性中风研究。通过 MR 提供解剖细节,可以消除与将 CT 与 PET 结合相关的额外辐射,这对于癌症筛查将是一个关键优势。将这两种仪器结合起来需要进行一些工程权衡,特别是与使用高度发达的光电倍增管(PMT)进行光放大有关,因为其与强磁场不兼容。我们的方法是提供磁铁和梯度的分裂,将磁敏组件(PMT)定位在磁场较弱的区域,只将闪烁体块等基本的 PET 组件留在强磁场区域。晶体通过延长光纤与 PMT 耦合。通过将 PET 电子设备移出 MR 射频(RF)和梯度线圈的区域,还可以获得另一个优势,因为 PET 和 MR 系统之间的电磁干扰效应可能会导致两种模态中的伪影,从而消除了这些干扰效应。在这里,我们描述了该系统的初步评估,该系统基本上是位于 1T 分裂磁铁中的 microPET Focus-120,并将其性能与以前的 microPET 仪器进行了比较。

相似文献

1
Preliminary evaluation of a combined microPET-MR system.
Technol Cancer Res Treat. 2010 Feb;9(1):53-60. doi: 10.1177/153303461000900106.
2
Development of a combined microPET-MR system.
Technol Cancer Res Treat. 2006 Aug;5(4):337-41. doi: 10.1177/153303460600500405.
5
Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI.
Phys Med Biol. 2011 Apr 21;56(8):2459-80. doi: 10.1088/0031-9155/56/8/009. Epub 2011 Mar 25.
6
Integrated whole-body PET/MR hybrid imaging: clinical experience.
Invest Radiol. 2013 May;48(5):280-9. doi: 10.1097/RLI.0b013e3182845a08.
7
PET Imaging Stability Measurements During Simultaneous Pulsing of Aggressive MR Sequences on the SIGNA PET/MR System.
J Nucl Med. 2018 Jan;59(1):167-172. doi: 10.2967/jnumed.117.194928. Epub 2017 Jul 26.
8
PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet.
Radiology. 2007 Sep;244(3):807-14. doi: 10.1148/radiol.2443061756.
9
Analysis and correction of count rate reduction during simultaneous MR-PET measurements with the BrainPET scanner.
IEEE Trans Med Imaging. 2012 Jul;31(7):1372-80. doi: 10.1109/TMI.2012.2188903. Epub 2012 Feb 24.
10
Improvement of attenuation correction in time-of-flight PET/MR imaging with a positron-emitting source.
J Nucl Med. 2014 Feb;55(2):329-36. doi: 10.2967/jnumed.113.125989. Epub 2014 Jan 16.

引用本文的文献

1
Data processing of 3D and 4D in-vivo electron paramagnetic resonance imaging co-registered with ultrasound. 3D printing as a registration tool.
Comput Electr Eng. 2019 Mar;74:130-137. doi: 10.1016/j.compeleceng.2019.01.012. Epub 2019 Jan 30.
2
PET/MRI: a frontier in era of complementary hybrid imaging.
Eur J Hybrid Imaging. 2018;2(1):12. doi: 10.1186/s41824-018-0030-6. Epub 2018 Jun 25.
3
Standardization of Small Animal Imaging-Current Status and Future Prospects.
Mol Imaging Biol. 2018 Oct;20(5):716-731. doi: 10.1007/s11307-017-1126-2.
4
Advances in PET/MR instrumentation and image reconstruction.
Br J Radiol. 2018 Jan;91(1081):20160363. doi: 10.1259/bjr.20160363. Epub 2016 Jul 22.
5
PET/MRI assessment of the infarcted mouse heart.
Nucl Instrum Methods Phys Res A. 2014 Jan 11;734(B):152-155. doi: 10.1016/j.nima.2013.08.066.
6
Reliability of using a fixed matrix in coregistration of combined PET-MRI in a split magnet design.
Nucl Instrum Methods Phys Res A. 2013 Feb 21;702:54-55. doi: 10.1016/j.nima.2012.07.060.
7
Riociguat reduces infarct size and post-infarct heart failure in mouse hearts: insights from MRI/PET imaging.
PLoS One. 2013 Dec 31;8(12):e83910. doi: 10.1371/journal.pone.0083910. eCollection 2013.
8
MRI and PET in mouse models of myocardial infarction.
J Vis Exp. 2013 Dec 19(82):e50806. doi: 10.3791/50806.
9
PET/MRI in the infarcted mouse heart with the Cambridge split magnet.
Nucl Instrum Methods Phys Res A. 2013 Feb 21;702:47-9. doi: 10.1016/j.nima.2012.07.061.

本文引用的文献

1
Determining Block Detector Positions for PET Scanners.
IEEE Nucl Sci Symp Conf Rec (1997). 2009 Oct 24;2009:2976-2980. doi: 10.1109/NSSMIC.2009.5401595.
2
Split gradient coils for simultaneous PET-MRI.
Magn Reson Med. 2009 Nov;62(5):1106-11. doi: 10.1002/mrm.22143.
3
PET/MRI system design.
Eur J Nucl Med Mol Imaging. 2009 Mar;36 Suppl 1:S86-92. doi: 10.1007/s00259-008-1008-6.
4
Development of a combined microPET-MR system.
Technol Cancer Res Treat. 2006 Aug;5(4):337-41. doi: 10.1177/153303460600500405.
5
Depth of interaction resolution measurements for a high resolution PET detector using position sensitive avalanche photodiodes.
Phys Med Biol. 2006 May 7;51(9):2131-42. doi: 10.1088/0031-9155/51/9/001. Epub 2006 Apr 10.
6
Performance evaluation of the microPET R4 PET scanner for rodents.
Eur J Nucl Med Mol Imaging. 2003 May;30(5):737-47. doi: 10.1007/s00259-002-1052-6. Epub 2003 Jan 21.
8
Exact and approximate rebinning algorithms for 3-D PET data.
IEEE Trans Med Imaging. 1997 Apr;16(2):145-58. doi: 10.1109/42.563660.
9
Automatic, localized in vivo adjustment of all first- and second-order shim coils.
Magn Reson Med. 1993 Jun;29(6):804-11. doi: 10.1002/mrm.1910290613.
10
Treatment of axial data in three-dimensional PET.
J Nucl Med. 1987 Nov;28(11):1717-24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验