Suppr超能文献

基于线性和非线性方法的“上流式厌氧污泥床”反应器处理废水厂性能建模——案例研究。

Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches--a case study.

机构信息

Environmental Chemistry Division, Indian Institute of Toxicology Research (Council of Scientific & Industrial Research), Post Box No. 80, MG Marg, Lucknow-226 002, UP, India.

出版信息

Anal Chim Acta. 2010 Jan 18;658(1):1-11. doi: 10.1016/j.aca.2009.11.001. Epub 2009 Nov 10.

Abstract

The paper describes linear and nonlinear modeling of the wastewater data for the performance evaluation of an up-flow anaerobic sludge blanket (UASB) reactor based wastewater treatment plant (WWTP). Partial least squares regression (PLSR), multivariate polynomial regression (MPR) and artificial neural networks (ANNs) modeling methods were applied to predict the levels of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in the UASB reactor effluents using four input variables measured weekly in the influent wastewater during the peak (morning and evening) and non-peak (noon) hours over a period of 48 weeks. The performance of the models was assessed through the root mean squared error (RMSE), relative error of prediction in percentage (REP), the bias, the standard error of prediction (SEP), the coefficient of determination (R(2)), the Nash-Sutcliffe coefficient of efficiency (E(f)), and the accuracy factor (A(f)), computed from the measured and model predicted values of the dependent variables (BOD, COD) in the WWTP effluents. Goodness of the model fit to the data was also evaluated through the relationship between the residuals and the model predicted values of BOD and COD. Although, the model predicted values of BOD and COD by all the three modeling approaches (PLSR, MPR, ANN) were in good agreement with their respective measured values in the WWTP effluents, the nonlinear models (MPR, ANNs) performed relatively better than the linear ones. These models can be used as a tool for the performance evaluation of the WWTPs.

摘要

本文描述了线性和非线性建模的废水数据的性能评价升流式厌氧污泥床(UASB)反应器为基础的污水处理厂(WWTP)。偏最小二乘回归(PLSR)、多元多项式回归(MPR)和人工神经网络(ANNs)建模方法被应用于预测生化需氧量(BOD)和化学需氧量(COD)水平在 UASB 反应器出水使用四个输入变量每周测量进水污水在高峰期(早上和晚上)和非高峰期(中午)的四个输入变量超过 48 周的时间。通过均方根误差(RMSE)、预测百分比的相对误差(REP)、偏差、预测标准误差(SEP)、决定系数(R(2))、纳什-苏特克里夫效率系数(E(f))和精度因子(A(f))评估模型的性能,从污水处理厂出水的依赖变量(BOD、COD)的实测值和模型预测值计算得出。通过残差与 BOD 和 COD 的模型预测值之间的关系,还评估了模型对数据的拟合程度。虽然,所有三种建模方法(PLSR、MPR、ANN)的 BOD 和 COD 的模型预测值与 WWTP 出水中的相应实测值吻合较好,但非线性模型(MPR、ANNs)的性能相对较好。这些模型可以作为 WWTP 性能评估的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验