Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research (Council of Scientific & Industrial Research), Post Box 80, Mahatma Gandhi Marg, Lucknow 226-001, India.
Environ Sci Pollut Res Int. 2012 Jul;19(6):2063-78. doi: 10.1007/s11356-011-0700-4. Epub 2012 Jan 8.
The present study aims to investigate the individual and combined effects of temperature, pH, zero-valent bimetallic nanoparticles (ZVBMNPs) dose, and chloramphenicol (CP) concentration on the reductive degradation of CP using ZVBMNPs in aqueous medium.
Iron-silver ZVBMNPs were synthesized. Batch experimental data were generated using a four-factor statistical experimental design. CP reduction by ZVBMNPs was optimized using the response surface modeling (RSM) and artificial neural network-genetic algorithm (ANN-GA) approaches. The RSM and ANN methodologies were also compared for their predictive and generalization abilities using the same training and validation data set. Reductive by-products of CP were identified using liquid chromatography-mass spectrometry technique.
The optimized process variables (RSM and ANN-GA approaches) yielded CP reduction capacity of 57.37 and 57.10 mg g(-1), respectively, as compared to the experimental value of 54.0 mg g(-1) with un-optimized variables. The ANN-GA and RSM methodologies yielded comparable results and helped to achieve a higher reduction (>6%) of CP by the ZVBMNPs as compared to the experimental value. The root mean squared error, relative standard error of prediction and correlation coefficient between the measured and model-predicted values of response variable were 1.34, 3.79, and 0.964 for RSM and 0.03, 0.07, and 0.999 for ANN models for the training and 1.39, 3.47, and 0.996 for RSM and 1.25, 3.11, and 0.990 for ANN models for the validation set.
Predictive and generalization abilities of both the RSM and ANN models were comparable. The synthesized ZVBMNPs may be used for an efficient reductive removal of CP from the water.
本研究旨在探讨温度、pH 值、零价双金属纳米粒子 (ZVBMNPs) 剂量和氯霉素 (CP) 浓度对 ZVBMNPs 在水介质中还原降解 CP 的单独和联合影响。
合成了铁银 ZVBMNPs。使用四因素统计实验设计生成批处理实验数据。使用响应面建模 (RSM) 和人工神经网络-遗传算法 (ANN-GA) 方法对 ZVBMNPs 还原 CP 进行优化。使用相同的训练和验证数据集比较了 RSM 和 ANN 方法在预测和泛化能力方面的表现。使用液相色谱-质谱技术鉴定 CP 的还原副产物。
优化后的工艺变量(RSM 和 ANN-GA 方法)分别产生 57.37 和 57.10 mg g(-1) 的 CP 还原能力,而未经优化变量的实验值为 54.0 mg g(-1)。ANN-GA 和 RSM 方法得出了类似的结果,并有助于实现 ZVBMNPs 对 CP 的更高还原(>6%),与实验值相比。响应变量的测量值和模型预测值之间的均方根误差、预测相对标准误差和相关系数分别为 RSM 模型的 1.34、3.79 和 0.964,以及 ANN 模型的 0.03、0.07 和 0.999,用于训练集,以及 RSM 模型的 1.39、3.47 和 0.996,以及 ANN 模型的 1.25、3.11 和 0.990,用于验证集。
RSM 和 ANN 模型的预测和泛化能力相当。合成的 ZVBMNPs 可用于有效去除水中的 CP。