Suppr超能文献

Conversion of the g=4.1 EPR signal to the multiline conformation during the S(2) to S(3) transition of the oxygen evolving complex of Photosystem II.

作者信息

Chrysina Maria, Zahariou Georgia, Ioannidis Nikolaos, Petrouleas Vasili

机构信息

Institute of Materials Science, NCSR Demokritos, Athens, Greece.

出版信息

Biochim Biophys Acta. 2010 Apr;1797(4):487-93. doi: 10.1016/j.bbabio.2010.01.008. Epub 2010 Jan 18.

Abstract

The oxygen evolving complex of Photosystem II undergoes four light-induced oxidation transitions, S(0)-S(1),...,S(3)-(S(4))S(0) during its catalytic cycle. The oxidizing equivalents are stored at a (Mn)(4)Ca cluster, the site of water oxidation. EPR spectroscopy has yielded valuable information on the S states. S(2) shows a notable heterogeneity with two spectral forms; a g=2 (S=1/2) multiline, and a g=4.1 (S=5/2) signal. These oscillate in parallel during the period-four cycle. Cyanobacteria show only the multiline signal, but upon advancement to S(3) they exhibit the same characteristic g=10 (S=3) absorption with plant preparations, implying that this latter signal results from the multiline configuration. The fate of the g=4.1 conformation during advancement to S(3) is accordingly unknown. We searched for light-induced transient changes in the EPR spectra at temperatures below and above the half-inhibition temperature for the S(2) to S(3) transition (ca 230K). We observed that, above about 220K the g=4.1 signal converts to a multiline form prior to advancement to S(3). We cannot exclude that the conversion results from visible-light excitation of the Mn cluster itself. The fact however, that the conversion coincides with the onset of the S(2) to S(3) transition, suggests that it is triggered by the charge-separation process, possibly the oxidation of tyr Z and the accompanying proton relocations. It therefore appears that a configuration of (Mn)(4)Ca with a low-spin ground state advances to S(3).

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验