Suppr超能文献

基于荧光共振能量转移的 M2 毒蕈碱型乙酰胆碱受体传感器揭示了别构调节的快速动力学。

A fluorescence resonance energy transfer-based M2 muscarinic receptor sensor reveals rapid kinetics of allosteric modulation.

机构信息

Institute of Pharmacology and Toxicology and the Rudolf Virchow Center, University of Würzburg, 97078 Würzburg, Germany.

出版信息

J Biol Chem. 2010 Mar 19;285(12):8793-800. doi: 10.1074/jbc.M109.098517. Epub 2010 Jan 18.

Abstract

Allosteric modulators have been identified for several G protein-coupled receptors, most notably muscarinic receptors. To study their mechanism of action, we made use of a recently developed technique to generate fluorescence resonance energy transfer (FRET)-based sensors to monitor G protein-coupled receptor activation. Cyan fluorescent protein was fused to the C terminus of the M(2) muscarinic receptor, and a specific binding sequence for the small fluorescent compound fluorescein arsenical hairpin binder, FlAsH, was inserted into the third intracellular loop; the latter site was labeled in intact cells by incubation with FlAsH. We then measured FRET between the donor cyan fluorescent protein and the acceptor FlAsH in intact cells and monitored its changes in real time. Agonists such as acetylcholine and carbachol induced rapid changes in FRET, indicative of agonist-induced conformational changes. Removal of the agonists or addition of an antagonist caused a reversal of this signal with rate constants between 400 and 1100 ms. The allosteric ligands gallamine and dimethyl-W84 caused no changes in FRET when given alone, but increased FRET when given in the presence of an agonist, compatible with an inactivation of the receptors. The kinetics of these effects were very rapid, with rate constants of 80-100 ms and approximately 200 ms for saturating concentrations of gallamine and dimethyl-W84, respectively. Because these speeds are significantly faster than the responses to antagonists, these data indicate that gallamine and dimethyl-W84 are allosteric ligands and actively induce a conformation of the M(2) receptor with a reduced affinity for its agonists.

摘要

变构调节剂已被鉴定用于几种 G 蛋白偶联受体,尤其是毒蕈碱受体。为了研究它们的作用机制,我们利用最近开发的技术生成荧光共振能量转移(FRET)为基础的传感器来监测 G 蛋白偶联受体的激活。青荧光蛋白融合到 M(2)毒蕈碱受体的 C 端,一个小荧光化合物荧光素砷发夹结合物(FlAsH)的特异性结合序列被插入到第三细胞内环;后者在完整细胞中通过与 FlAsH 孵育进行标记。然后,我们测量了完整细胞中青荧光蛋白供体和 FlAsH 受体之间的 FRET,并实时监测其变化。激动剂,如乙酰胆碱和卡巴胆碱,引起 FRET 的快速变化,表明激动剂诱导的构象变化。去除激动剂或加入拮抗剂会导致信号逆转,其速率常数在 400 到 1100 毫秒之间。变构配体胍和二甲-W84 单独使用时不会引起 FRET 的变化,但在存在激动剂时会增加 FRET,与受体失活兼容。这些效应的动力学非常迅速,胍和二甲-W84 的速率常数分别为 80-100 毫秒和约 200 毫秒,达到饱和浓度。由于这些速度明显快于对拮抗剂的反应,这些数据表明胍和二甲-W84 是变构配体,积极诱导 M(2)受体的构象,降低其与激动剂的亲和力。

相似文献

1
A fluorescence resonance energy transfer-based M2 muscarinic receptor sensor reveals rapid kinetics of allosteric modulation.
J Biol Chem. 2010 Mar 19;285(12):8793-800. doi: 10.1074/jbc.M109.098517. Epub 2010 Jan 18.
2
FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors.
Bioorg Med Chem. 2011 Feb 1;19(3):1048-54. doi: 10.1016/j.bmc.2010.07.060. Epub 2010 Jul 30.
4
Oligomeric size of the m2 muscarinic receptor in live cells as determined by quantitative fluorescence resonance energy transfer.
J Biol Chem. 2010 May 28;285(22):16723-38. doi: 10.1074/jbc.M109.069443. Epub 2010 Mar 19.
6
Allosteric site in M2 acetylcholine receptors: evidence for a major conformational change upon binding of an orthosteric agonist instead of an antagonist.
Naunyn Schmiedebergs Arch Pharmacol. 2006 Jan;372(4):267-76. doi: 10.1007/s00210-005-0023-4. Epub 2005 Dec 16.
8
Regulation of M2 muscarinic acetylcholine receptor expression and signaling by prolonged exposure to allosteric modulators.
J Pharmacol Exp Ther. 2005 Jan;312(1):382-90. doi: 10.1124/jpet.104.073767. Epub 2004 Aug 27.
9
The allosteric site regulates the voltage sensitivity of muscarinic receptors.
Cell Signal. 2018 Jan;42:114-126. doi: 10.1016/j.cellsig.2017.10.011. Epub 2017 Oct 19.
10
FRET-based detection of M1 muscarinic acetylcholine receptor activation by orthosteric and allosteric agonists.
PLoS One. 2012;7(1):e29946. doi: 10.1371/journal.pone.0029946. Epub 2012 Jan 17.

引用本文的文献

1
Investigating G-protein coupled receptor signalling with light-emitting biosensors.
Front Physiol. 2024 Jan 8;14:1310197. doi: 10.3389/fphys.2023.1310197. eCollection 2023.
2
A cholinergic circuit that relieves pain despite opioid tolerance.
Neuron. 2023 Nov 1;111(21):3414-3434.e15. doi: 10.1016/j.neuron.2023.08.017. Epub 2023 Sep 20.
4
Genetically encoded fluorescent biosensors for GPCR research.
Front Cell Dev Biol. 2022 Sep 29;10:1007893. doi: 10.3389/fcell.2022.1007893. eCollection 2022.
5
Examination of Intracellular GPCR-Mediated Signaling with High Temporal Resolution.
Int J Mol Sci. 2022 Jul 31;23(15):8516. doi: 10.3390/ijms23158516.
6
Selective optogenetic control of G signaling using human Neuropsin.
Nat Commun. 2022 Apr 1;13(1):1765. doi: 10.1038/s41467-022-29265-w.
7
Letting the little light of mind shine: Advances and future directions in neurochemical detection.
Neurosci Res. 2022 Jun;179:65-78. doi: 10.1016/j.neures.2021.11.012. Epub 2021 Nov 30.
8
Update on PET Tracer Development for Muscarinic Acetylcholine Receptors.
Pharmaceuticals (Basel). 2021 Jun 2;14(6):530. doi: 10.3390/ph14060530.
10
Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators.
Curr Opin Neurobiol. 2018 Jun;50:171-178. doi: 10.1016/j.conb.2018.03.010. Epub 2018 Apr 5.

本文引用的文献

1
Allosteric modulation of muscarinic acetylcholine receptors.
Curr Neuropharmacol. 2007 Sep;5(3):157-67. doi: 10.2174/157015907781695946.
2
Analysis of receptor oligomerization by FRAP microscopy.
Nat Methods. 2009 Mar;6(3):225-30. doi: 10.1038/nmeth.1304. Epub 2009 Feb 22.
3
Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders.
Nat Rev Drug Discov. 2009 Jan;8(1):41-54. doi: 10.1038/nrd2760.
5
Agonist-selective, receptor-specific interaction of human P2Y receptors with beta-arrestin-1 and -2.
J Biol Chem. 2008 Nov 7;283(45):30933-41. doi: 10.1074/jbc.M801472200. Epub 2008 Aug 14.
6
Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors.
Trends Pharmacol Sci. 2008 Mar;29(3):159-65. doi: 10.1016/j.tips.2007.12.002. Epub 2008 Feb 11.
7
Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling.
Nat Chem Biol. 2008 Feb;4(2):126-31. doi: 10.1038/nchembio.64. Epub 2008 Jan 13.
10
Distinct structural changes in a G protein-coupled receptor caused by different classes of agonist ligands.
J Biol Chem. 2007 Sep 7;282(36):26284-93. doi: 10.1074/jbc.M704875200. Epub 2007 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验