Department of Biomedical Engineering and High-Throughput Biology Center, Johns Hopkins University, Baltimore, Maryland, USA.
PLoS One. 2010 Jan 11;5(1):e8118. doi: 10.1371/journal.pone.0008118.
Biological networks change dynamically as protein components are synthesized and degraded. Understanding the time-dependence and, in a multicellular organism, tissue-dependence of a network leads to insight beyond a view that collapses time-varying interactions into a single static map. Conventional algorithms are limited to analyzing evolving networks by reducing them to a series of unrelated snapshots.Here we introduce an approach that groups proteins according to shared interaction patterns through a dynamical hierarchical stochastic block model. Protein membership in a block is permitted to evolve as interaction patterns shift over time and space, representing the spatial organization of cell types in a multicellular organism. The spatiotemporal evolution of the protein components are inferred from transcript profiles, using Arabidopsis root development (5 tissues, 3 temporal stages) as an example.The new model requires essentially no parameter tuning, out-performs existing snapshot-based methods, identifies protein modules recruited to specific cell types and developmental stages, and could have broad application to social networks and other similar dynamic systems.
生物网络随着蛋白质成分的合成和降解而动态变化。了解网络的时间依赖性,以及在多细胞生物中的组织依赖性,会使我们超越将时变相互作用简化为单个静态图谱的观点。传统的算法通过将它们简化为一系列不相关的快照来限制对不断发展的网络的分析。在这里,我们介绍了一种通过动态层次随机块模型根据共享相互作用模式对蛋白质进行分组的方法。允许蛋白质成员资格随着相互作用模式随时间和空间的变化而演变,从而代表多细胞生物中细胞类型的空间组织。使用拟南芥根发育(5 种组织,3 个时间阶段)作为示例,从转录谱中推断蛋白质成分的时空演化。新模型基本上不需要参数调整,优于现有的基于快照的方法,可以识别招募到特定细胞类型和发育阶段的蛋白质模块,并且可以广泛应用于社交网络和其他类似的动态系统。