Suppr超能文献

网络中的混合模型与探索性分析

Mixture models and exploratory analysis in networks.

作者信息

Newman M E J, Leicht E A

机构信息

Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9564-9. doi: 10.1073/pnas.0610537104. Epub 2007 May 24.

Abstract

Networks are widely used in the biological, physical, and social sciences as a concise mathematical representation of the topology of systems of interacting components. Understanding the structure of these networks is one of the outstanding challenges in the study of complex systems. Here we describe a general technique for detecting structural features in large-scale network data that works by dividing the nodes of a network into classes such that the members of each class have similar patterns of connection to other nodes. Using the machinery of probabilistic mixture models and the expectation-maximization algorithm, we show that it is possible to detect, without prior knowledge of what we are looking for, a very broad range of types of structure in networks. We give a number of examples demonstrating how the method can be used to shed light on the properties of real-world networks, including social and information networks.

摘要

网络在生物科学、物理科学和社会科学中被广泛使用,作为相互作用组件系统拓扑结构的一种简洁数学表示。理解这些网络的结构是复杂系统研究中突出的挑战之一。在此,我们描述一种用于检测大规模网络数据中结构特征的通用技术,该技术通过将网络节点划分为不同类别来实现,使得每个类别的成员与其他节点具有相似的连接模式。利用概率混合模型和期望最大化算法的机制,我们表明,无需事先知道要寻找什么,就能够检测网络中非常广泛的各种类型的结构。我们给出了一些示例,展示了该方法如何用于阐明现实世界网络(包括社会网络和信息网络)的属性。

相似文献

1
Mixture models and exploratory analysis in networks.网络中的混合模型与探索性分析
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9564-9. doi: 10.1073/pnas.0610537104. Epub 2007 May 24.
2
Assortative mixing in close-packed spatial networks.紧密堆积空间网络中的聚集混合。
PLoS One. 2010 Dec 16;5(12):e15551. doi: 10.1371/journal.pone.0015551.
3
Exploring the structural regularities in networks.探索网络中的结构规律。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 2):056111. doi: 10.1103/PhysRevE.84.056111. Epub 2011 Nov 28.
7
9
ODE-Based Modeling of Complex Regulatory Circuits.基于常微分方程的复杂调控回路建模
Methods Mol Biol. 2017;1629:317-330. doi: 10.1007/978-1-4939-7125-1_20.
10
Deciphering the connectivity structure of biological networks using MixNet.使用混合网络解析生物网络的连接结构。
BMC Bioinformatics. 2009 Jun 16;10 Suppl 6(Suppl 6):S17. doi: 10.1186/1471-2105-10-S6-S17.

引用本文的文献

3
A network community structure similarity index for weighted networks.加权网络的网络社区结构相似性指数。
PLoS One. 2023 Nov 29;18(11):e0292018. doi: 10.1371/journal.pone.0292018. eCollection 2023.
4
Living on the edge: network neuroscience beyond nodes.边缘生活:节点之外的网络神经科学。
Trends Cogn Sci. 2023 Nov;27(11):1068-1084. doi: 10.1016/j.tics.2023.08.009. Epub 2023 Sep 14.
6
The structure and dynamics of multilayer networks.多层网络的结构与动态特性
Phys Rep. 2014 Nov 1;544(1):1-122. doi: 10.1016/j.physrep.2014.07.001. Epub 2014 Jul 10.
8
Modeling Endogenous Mobility in Earnings Determination.在收入决定中对内生流动性进行建模。
J Bus Econ Stat. 2019;37(3):405-418. doi: 10.1080/07350015.2017.1356727. Epub 2018 May 7.
9
Nine quick tips for analyzing network data.分析网络数据的九个快速提示。
PLoS Comput Biol. 2019 Dec 19;15(12):e1007434. doi: 10.1371/journal.pcbi.1007434. eCollection 2019 Dec.

本文引用的文献

1
Spectral measures of bipartivity in complex networks.复杂网络中二分性的谱测度
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 2):046105. doi: 10.1103/PhysRevE.72.046105. Epub 2005 Oct 7.
3
Detecting fuzzy community structures in complex networks with a Potts model.利用Potts模型检测复杂网络中的模糊社区结构。
Phys Rev Lett. 2004 Nov 19;93(21):218701. doi: 10.1103/PhysRevLett.93.218701. Epub 2004 Nov 15.
4
Network bipartivity.网络二分性
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Nov;68(5 Pt 2):056107. doi: 10.1103/PhysRevE.68.056107. Epub 2003 Nov 7.
6
Assortative mixing in networks.网络中的选择性混合。
Phys Rev Lett. 2002 Nov 11;89(20):208701. doi: 10.1103/PhysRevLett.89.208701. Epub 2002 Oct 28.
8
Community structure in social and biological networks.社会和生物网络中的群落结构。
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6. doi: 10.1073/pnas.122653799.
9
Dynamical and correlation properties of the internet.互联网的动力学和相关性属性
Phys Rev Lett. 2001 Dec 17;87(25):258701. doi: 10.1103/PhysRevLett.87.258701. Epub 2001 Nov 28.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验