Newman M E J, Leicht E A
Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9564-9. doi: 10.1073/pnas.0610537104. Epub 2007 May 24.
Networks are widely used in the biological, physical, and social sciences as a concise mathematical representation of the topology of systems of interacting components. Understanding the structure of these networks is one of the outstanding challenges in the study of complex systems. Here we describe a general technique for detecting structural features in large-scale network data that works by dividing the nodes of a network into classes such that the members of each class have similar patterns of connection to other nodes. Using the machinery of probabilistic mixture models and the expectation-maximization algorithm, we show that it is possible to detect, without prior knowledge of what we are looking for, a very broad range of types of structure in networks. We give a number of examples demonstrating how the method can be used to shed light on the properties of real-world networks, including social and information networks.
网络在生物科学、物理科学和社会科学中被广泛使用,作为相互作用组件系统拓扑结构的一种简洁数学表示。理解这些网络的结构是复杂系统研究中突出的挑战之一。在此,我们描述一种用于检测大规模网络数据中结构特征的通用技术,该技术通过将网络节点划分为不同类别来实现,使得每个类别的成员与其他节点具有相似的连接模式。利用概率混合模型和期望最大化算法的机制,我们表明,无需事先知道要寻找什么,就能够检测网络中非常广泛的各种类型的结构。我们给出了一些示例,展示了该方法如何用于阐明现实世界网络(包括社会网络和信息网络)的属性。