Suppr超能文献

种群分化作为选择清除的检验。

Population differentiation as a test for selective sweeps.

机构信息

Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Genome Res. 2010 Mar;20(3):393-402. doi: 10.1101/gr.100545.109. Epub 2010 Jan 19.

Abstract

Selective sweeps can increase genetic differentiation among populations and cause allele frequency spectra to depart from the expectation under neutrality. We present a likelihood method for detecting selective sweeps that involves jointly modeling the multilocus allele frequency differentiation between two populations. We use Brownian motion to model genetic drift under neutrality, and a deterministic model to approximate the effect of a selective sweep on single nucleotide polymorphisms (SNPs) in the vicinity. We test the method with extensive simulated data, and demonstrate that in some scenarios the method provides higher power than previously reported approaches to detect selective sweeps, and can provide surprisingly good localization of the position of a selected allele. A strength of our technique is that it uses allele frequency differentiation between populations, which is much more robust to ascertainment bias in SNP discovery than methods based on the allele frequency spectrum. We apply this method to compare continentally diverse populations, as well as Northern and Southern Europeans. Our analysis identifies a list of loci as candidate targets of selection, including well-known selected loci and new regions that have not been highlighted by previous scans for selection.

摘要

选择压力可以增加种群间的遗传分化,并导致等位基因频率谱偏离中性条件下的预期。我们提出了一种检测选择压力的似然方法,该方法涉及联合建模两个种群之间的多位点等位基因频率分化。我们使用布朗运动来模拟中性条件下的遗传漂变,并用确定性模型来近似选择压力对附近单核苷酸多态性(SNP)的影响。我们使用广泛的模拟数据对该方法进行了测试,并证明在某些情况下,该方法比以前报道的检测选择压力的方法具有更高的功效,并且可以对选定等位基因的位置进行令人惊讶的良好定位。我们的技术的一个优势是它使用了种群之间的等位基因频率分化,这比基于等位基因频率谱的方法更能抵抗 SNP 发现中的确认偏差。我们将该方法应用于比较大陆多样化的种群,以及北欧和南欧人群。我们的分析确定了一系列作为选择候选目标的基因座,包括众所周知的选择基因座和以前的选择扫描中未突出显示的新区域。

相似文献

1
Population differentiation as a test for selective sweeps.
Genome Res. 2010 Mar;20(3):393-402. doi: 10.1101/gr.100545.109. Epub 2010 Jan 19.
2
Genomic scans for selective sweeps using SNP data.
Genome Res. 2005 Nov;15(11):1566-75. doi: 10.1101/gr.4252305.
3
Testing for Ancient Selection Using Cross-population Allele Frequency Differentiation.
Genetics. 2016 Feb;202(2):733-50. doi: 10.1534/genetics.115.178095. Epub 2015 Nov 23.
4
Detecting Selection in Multiple Populations by Modeling Ancestral Admixture Components.
Mol Biol Evol. 2022 Jan 7;39(1). doi: 10.1093/molbev/msab294.
5
Two-dimensional site frequency spectrum for detecting, classifying and dating incomplete selective sweeps.
Genes Genet Syst. 2020 Jan 30;94(6):283-300. doi: 10.1266/ggs.19-00012. Epub 2019 Dec 11.
6
Allele frequency distribution under recurrent selective sweeps.
Genetics. 2006 Mar;172(3):1967-78. doi: 10.1534/genetics.105.048447. Epub 2005 Dec 15.
7
Patterns of neutral diversity under general models of selective sweeps.
Genetics. 2012 Sep;192(1):205-24. doi: 10.1534/genetics.112.141861. Epub 2012 Jun 19.
8
Identifying and Classifying Shared Selective Sweeps from Multilocus Data.
Genetics. 2020 May;215(1):143-171. doi: 10.1534/genetics.120.303137. Epub 2020 Mar 9.
9
A test for ancient selective sweeps and an application to candidate sites in modern humans.
Mol Biol Evol. 2014 Dec;31(12):3344-58. doi: 10.1093/molbev/msu255. Epub 2014 Aug 28.
10
A genome-wide scan shows evidence for local adaptation in a widespread keystone Neotropical forest tree.
Heredity (Edinb). 2019 Aug;123(2):117-137. doi: 10.1038/s41437-019-0188-0. Epub 2019 Feb 12.

引用本文的文献

4
Transcription Factor LjWRKY50 Affects Jasmonate-Regulated Floral Bud Duration in .
Plants (Basel). 2025 Jul 27;14(15):2328. doi: 10.3390/plants14152328.
7
Genomic insights into deleterious mutations and their impact on agronomic traits during pear domestication.
Hortic Res. 2025 May 29;12(9):uhaf140. doi: 10.1093/hr/uhaf140. eCollection 2025 Sep.
9
Integrating parental genomes to reduce reference bias and identify intramuscular fat genes in Qinchuan Black pigs.
J Anim Sci Biotechnol. 2025 Jul 20;16(1):104. doi: 10.1186/s40104-025-01236-3.
10
Positive selection on rare variants of IGF1R and BRD4 underlying the cold adaptation of wild boar.
Genet Sel Evol. 2025 Jul 16;57(1):40. doi: 10.1186/s12711-025-00986-y.

本文引用的文献

1
Constructing genomic maps of positive selection in humans: where do we go from here?
Genome Res. 2009 May;19(5):711-22. doi: 10.1101/gr.086652.108.
2
Signals of recent positive selection in a worldwide sample of human populations.
Genome Res. 2009 May;19(5):826-37. doi: 10.1101/gr.087577.108. Epub 2009 Mar 23.
3
Darwinian and demographic forces affecting human protein coding genes.
Genome Res. 2009 May;19(5):838-49. doi: 10.1101/gr.088336.108. Epub 2009 Mar 11.
4
The Population Reference Sample, POPRES: a resource for population, disease, and pharmacological genetics research.
Am J Hum Genet. 2008 Sep;83(3):347-58. doi: 10.1016/j.ajhg.2008.08.005. Epub 2008 Aug 28.
5
Confounding between recombination and selection, and the Ped/Pop method for detecting selection.
Genome Res. 2008 Aug;18(8):1304-13. doi: 10.1101/gr.067181.107. Epub 2008 Jul 10.
6
A genome-wide association study identifies novel alleles associated with hair color and skin pigmentation.
PLoS Genet. 2008 May 16;4(5):e1000074. doi: 10.1371/journal.pgen.1000074.
8
Three genome-wide association studies and a linkage analysis identify HERC2 as a human iris color gene.
Am J Hum Genet. 2008 Feb;82(2):411-23. doi: 10.1016/j.ajhg.2007.10.003. Epub 2008 Jan 25.
9
Discerning the ancestry of European Americans in genetic association studies.
PLoS Genet. 2008 Jan;4(1):e236. doi: 10.1371/journal.pgen.0030236. Epub 2007 Nov 19.
10
Genome-wide detection and characterization of positive selection in human populations.
Nature. 2007 Oct 18;449(7164):913-8. doi: 10.1038/nature06250.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验