Suppr超能文献

从多基因座数据中识别和分类共享的选择漂变。

Identifying and Classifying Shared Selective Sweeps from Multilocus Data.

机构信息

Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802.

Molecular, Cellular, and Integrative Biosciences at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802.

出版信息

Genetics. 2020 May;215(1):143-171. doi: 10.1534/genetics.120.303137. Epub 2020 Mar 9.

Abstract

Positive selection causes beneficial alleles to rise to high frequency, resulting in a selective sweep of the diversity surrounding the selected sites. Accordingly, the signature of a selective sweep in an ancestral population may still remain in its descendants. Identifying signatures of selection in the ancestor that are shared among its descendants is important to contextualize the timing of a sweep, but few methods exist for this purpose. We introduce the statistic SS-H12, which can identify genomic regions under shared positive selection across populations and is based on the theory of the expected haplotype homozygosity statistic H12, which detects recent hard and soft sweeps from the presence of high-frequency haplotypes. SS-H12 is distinct from comparable statistics because it requires a minimum of only two populations, and properly identifies and differentiates between independent convergent sweeps and true ancestral sweeps, with high power and robustness to a variety of demographic models. Furthermore, we can apply SS-H12 in conjunction with the ratio of statistics we term [Formula: see text] and [Formula: see text] to further classify identified shared sweeps as hard or soft. Finally, we identified both previously reported and novel shared sweep candidates from human whole-genome sequences. Previously reported candidates include the well-characterized ancestral sweeps at and in Indo-Europeans, as well as worldwide. Novel candidates include an ancestral sweep at in sub-Saharan Africans involved in regulating the platelet response and implicated in sudden cardiac death, and a convergent sweep at between European and East Asian populations that may explain their different insulin responses.

摘要

正选择导致有利等位基因上升到高频率,导致选择位点周围的多样性发生选择性清除。因此,祖先群体中选择清除的特征可能仍然存在于其后代中。在祖先中识别与后代共享的选择特征对于确定清除的时间很重要,但为此目的存在的方法很少。我们引入了统计量 SS-H12,它可以识别跨群体共有的正选择下的基因组区域,并且基于预期单倍型纯合性统计量 H12 的理论,该理论通过高频单倍型的存在来检测最近的硬选择和软选择。SS-H12 与可比统计量不同,因为它只需要最少两个群体,并且可以正确识别和区分独立的趋同清除和真正的祖先清除,具有多种人口模型的高功效和稳健性。此外,我们可以结合我们称之为[公式:见文本]和[公式:见文本]的统计量的比率来应用 SS-H12,以进一步将识别出的共有的清除分类为硬清除或软清除。最后,我们从人类全基因组序列中鉴定了以前报道和新的共有的清除候选者。以前报道的候选者包括在印欧语系中得到很好描述的祖先清除,以及在全世界范围内的 。新的候选者包括在调节血小板反应并与心源性猝死有关的撒哈拉以南非洲人中的祖先清除,以及在欧洲和东亚人群之间的趋同清除,这可能解释了它们不同的胰岛素反应。

相似文献

1
Identifying and Classifying Shared Selective Sweeps from Multilocus Data.
Genetics. 2020 May;215(1):143-171. doi: 10.1534/genetics.120.303137. Epub 2020 Mar 9.
2
Detection and Classification of Hard and Soft Sweeps from Unphased Genotypes by Multilocus Genotype Identity.
Genetics. 2018 Dec;210(4):1429-1452. doi: 10.1534/genetics.118.301502. Epub 2018 Oct 12.
3
Enhancing the mathematical properties of new haplotype homozygosity statistics for the detection of selective sweeps.
Theor Popul Biol. 2015 Jun;102:94-101. doi: 10.1016/j.tpb.2015.04.001. Epub 2015 Apr 16.
4
A Likelihood Approach for Uncovering Selective Sweep Signatures from Haplotype Data.
Mol Biol Evol. 2020 Oct 1;37(10):3023-3046. doi: 10.1093/molbev/msaa115.
5
Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps.
PLoS Genet. 2015 Feb 23;11(2):e1005004. doi: 10.1371/journal.pgen.1005004. eCollection 2015 Feb.
6
Soft shoulders ahead: spurious signatures of soft and partial selective sweeps result from linked hard sweeps.
Genetics. 2015 May;200(1):267-84. doi: 10.1534/genetics.115.174912. Epub 2015 Feb 25.
7
Refining the Use of Linkage Disequilibrium as a Robust Signature of Selective Sweeps.
Genetics. 2016 Aug;203(4):1807-25. doi: 10.1534/genetics.115.185900.
9
Predicting Carriers of Ongoing Selective Sweeps without Knowledge of the Favored Allele.
PLoS Genet. 2015 Sep 24;11(9):e1005527. doi: 10.1371/journal.pgen.1005527. eCollection 2015 Sep.
10
Allelic gene conversion softens selective sweeps.
bioRxiv. 2023 Dec 5:2023.12.05.570141. doi: 10.1101/2023.12.05.570141.

引用本文的文献

2
Digital Image Processing to Detect Adaptive Evolution.
Mol Biol Evol. 2024 Dec 6;41(12). doi: 10.1093/molbev/msae242.
5
Lineage-specific positive selection on contributes to the genetic susceptibility of COVID-19.
Natl Sci Rev. 2022 Jul 1;9(9):nwac118. doi: 10.1093/nsr/nwac118. eCollection 2022 Sep.
7
Museomics Dissects the Genetic Basis for Adaptive Seasonal Coloration in the Least Weasel.
Mol Biol Evol. 2021 Sep 27;38(10):4388-4402. doi: 10.1093/molbev/msab177.
9
Contrasting signatures of genomic divergence during sympatric speciation.
Nature. 2020 Dec;588(7836):106-111. doi: 10.1038/s41586-020-2845-0. Epub 2020 Oct 28.
10
A Likelihood Approach for Uncovering Selective Sweep Signatures from Haplotype Data.
Mol Biol Evol. 2020 Oct 1;37(10):3023-3046. doi: 10.1093/molbev/msaa115.

本文引用的文献

1
A Likelihood Approach for Uncovering Selective Sweep Signatures from Haplotype Data.
Mol Biol Evol. 2020 Oct 1;37(10):3023-3046. doi: 10.1093/molbev/msaa115.
2
Localizing and Classifying Adaptive Targets with Trend Filtered Regression.
Mol Biol Evol. 2019 Feb 1;36(2):252-270. doi: 10.1093/molbev/msy205.
3
Detection and Classification of Hard and Soft Sweeps from Unphased Genotypes by Multilocus Genotype Identity.
Genetics. 2018 Dec;210(4):1429-1452. doi: 10.1534/genetics.118.301502. Epub 2018 Oct 12.
5
Detecting Signatures of Positive Selection along Defined Branches of a Population Tree Using LSD.
Mol Biol Evol. 2018 Jun 1;35(6):1520-1535. doi: 10.1093/molbev/msy053.
6
Insulin resistance in cavefish as an adaptation to a nutrient-limited environment.
Nature. 2018 Mar 29;555(7698):647-651. doi: 10.1038/nature26136. Epub 2018 Mar 21.
7
Patterns of shared signatures of recent positive selection across human populations.
Nat Ecol Evol. 2018 Apr;2(4):713-720. doi: 10.1038/s41559-018-0478-6. Epub 2018 Feb 19.
8
Identifying the favored mutation in a positive selective sweep.
Nat Methods. 2018 Apr;15(4):279-282. doi: 10.1038/nmeth.4606. Epub 2018 Feb 19.
10
Estimating Time to the Common Ancestor for a Beneficial Allele.
Mol Biol Evol. 2018 Apr 1;35(4):1003-1017. doi: 10.1093/molbev/msy006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验