Suppr超能文献

使用全基因组表达谱分析和跨平台分析鉴定亨廷顿病中的转录变化。

Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis.

机构信息

Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V5Z 4H4.

出版信息

Hum Mol Genet. 2010 Apr 15;19(8):1438-52. doi: 10.1093/hmg/ddq018. Epub 2010 Jan 20.

Abstract

Evaluation of transcriptional changes in the striatum may be an effective approach to understanding the natural history of changes in expression contributing to the pathogenesis of Huntington disease (HD). We have performed genome-wide expression profiling of the YAC128 transgenic mouse model of HD at 12 and 24 months of age using two platforms in parallel: Affymetrix and Illumina. The data from these two powerful platforms were integrated to create a combined rank list, thereby revealing the identity of additional genes that proved to be differentially expressed between YAC128 and control mice. Using this approach, we identified 13 genes to be differentially expressed between YAC128 and controls which were validated by quantitative real-time PCR in independent cohorts of animals. In addition, we analyzed additional time points relevant to disease pathology: 3, 6 and 9 months of age. Here we present data showing the evolution of changes in the expression of selected genes: Wt1, Pcdh20 and Actn2 RNA levels change as early as 3 months of age, whereas Gsg1l, Sfmbt2, Acy3, Polr2a and Ppp1r9a RNA expression levels are affected later, at 12 and 24 months of age. We also analyzed the expression of these 13 genes in human HD and control brain, thereby revealing changes in SLC45A3, PCDH20, ACTN2, DDAH1 and PPP1R9A RNA expression. Further study of these genes may unravel novel pathways contributing to HD pathogenesis. DDBJ/EMBL/GenBank accession no: GSE19677.

摘要

评估纹状体中的转录变化可能是了解导致亨廷顿病(HD)发病机制的表达变化的有效方法。我们使用两种平台平行对 YAC128 转基因 HD 小鼠模型进行了全基因组表达谱分析:Affymetrix 和 Illumina。这两个强大平台的数据被整合到一个综合排名列表中,从而揭示了另外一些被证明在 YAC128 和对照小鼠之间差异表达的基因的身份。使用这种方法,我们鉴定了 13 个在 YAC128 和对照之间差异表达的基因,这些基因在独立的动物队列中通过定量实时 PCR 得到了验证。此外,我们还分析了与疾病病理学相关的其他时间点:3、6 和 9 个月大。在这里,我们展示了数据,显示了选定基因表达变化的演变:Wt1、Pcdh20 和 Actn2 RNA 水平早在 3 个月大时就发生变化,而 Gsg1l、Sfmbt2、Acy3、Polr2a 和 Ppp1r9a RNA 表达水平则在 12 和 24 个月大时受到影响。我们还分析了这些 13 个基因在人类 HD 和对照大脑中的表达,从而揭示了 SLC45A3、PCDH20、ACTN2、DDAH1 和 PPP1R9A RNA 表达的变化。进一步研究这些基因可能揭示导致 HD 发病机制的新途径。DDBJ/EMBL/GenBank 登录号:GSE19677。

相似文献

1
Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis.
Hum Mol Genet. 2010 Apr 15;19(8):1438-52. doi: 10.1093/hmg/ddq018. Epub 2010 Jan 20.
2
Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease.
Hum Mol Genet. 2005 Dec 15;14(24):3823-35. doi: 10.1093/hmg/ddi407. Epub 2005 Nov 8.
3
Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease.
Neurobiol Dis. 2011 Jul;43(1):257-65. doi: 10.1016/j.nbd.2011.03.018. Epub 2011 Mar 31.
5
Selective striatal neuronal loss in a YAC128 mouse model of Huntington disease.
Hum Mol Genet. 2003 Jul 1;12(13):1555-67. doi: 10.1093/hmg/ddg169.
9
Transcriptional abnormalities in Huntington disease.
Trends Genet. 2003 May;19(5):233-8. doi: 10.1016/S0168-9525(03)00074-X.
10
P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease.
Neurobiol Dis. 2012 Mar;45(3):999-1009. doi: 10.1016/j.nbd.2011.12.019. Epub 2011 Dec 14.

引用本文的文献

4
Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders.
Epigenomics. 2024 Mar;16(5):331-358. doi: 10.2217/epi-2023-0428. Epub 2024 Feb 7.
5
Environmental Deprivation Effects on Myelin Ultrastructure in Huntington Disease and Wildtype Mice.
Mol Neurobiol. 2024 Jul;61(7):4278-4288. doi: 10.1007/s12035-023-03799-6. Epub 2023 Dec 11.
6
A Novel Huntington's Disease Assessment Platform to Support Future Drug Discovery and Development.
Int J Mol Sci. 2022 Nov 25;23(23):14763. doi: 10.3390/ijms232314763.
9
mRNA isoform balance in neuronal development and disease.
Wiley Interdiscip Rev RNA. 2023 May-Jun;14(3):e1762. doi: 10.1002/wrna.1762. Epub 2022 Sep 19.

本文引用的文献

2
SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer.
Cancer Res. 2009 Apr 1;69(7):2734-8. doi: 10.1158/0008-5472.CAN-08-4926. Epub 2009 Mar 17.
3
Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6.
Science. 2009 Feb 27;323(5918):1208-1211. doi: 10.1126/science.1165942.
4
Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis.
Science. 2009 Feb 27;323(5918):1205-8. doi: 10.1126/science.1166066.
5
Canonical WNT signalling determines lineage specificity in Wilms tumour.
Oncogene. 2009 Feb 26;28(8):1063-75. doi: 10.1038/onc.2008.455. Epub 2009 Jan 12.
7
Mechanisms of neurodegeneration in Huntington's disease.
Eur J Neurosci. 2008 Jun;27(11):2803-20. doi: 10.1111/j.1460-9568.2008.06310.x.
8
Huntington's disease: from pathology and genetics to potential therapies.
Biochem J. 2008 Jun 1;412(2):191-209. doi: 10.1042/BJ20071619.
9
Cortical thickness measured from MRI in the YAC128 mouse model of Huntington's disease.
Neuroimage. 2008 Jun;41(2):243-51. doi: 10.1016/j.neuroimage.2008.02.019. Epub 2008 Feb 26.
10
Postmortem delay has minimal effect on brain RNA integrity.
J Neuropathol Exp Neurol. 2007 Dec;66(12):1093-9. doi: 10.1097/nen.0b013e31815c196a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验