文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

DDHA-1 维持内质网-线粒体接触,保护帕金森病中的多巴胺能神经元。

DDAH-1 maintains endoplasmic reticulum-mitochondria contacts and protects dopaminergic neurons in Parkinson's disease.

机构信息

Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.

Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

出版信息

Cell Death Dis. 2024 Jun 7;15(6):399. doi: 10.1038/s41419-024-06772-w.


DOI:10.1038/s41419-024-06772-w
PMID:38849335
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11161642/
Abstract

The loss of dopaminergic neurons in the substantia nigra is a hallmark of pathology in Parkinson's disease (PD). Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) is the critical enzyme responsible for the degradation of asymmetric dimethylarginine (ADMA) which inhibits nitric oxide (NO) synthase and has been implicated in neurodegeneration. Mitochondrial dysfunction, particularly in the mitochondria-associated endoplasmic reticulum membrane (MAM), plays a critical role in this process, although the specific molecular target has not yet been determined. This study aims to examine the involvement of DDAH-1 in the nigrostriatal dopaminergic pathway and PD pathogenesis. The distribution of DDAH-1 in the brain and its colocalization with dopaminergic neurons were observed. The loss of dopaminergic neurons and aggravated locomotor disability after rotenone (ROT) injection were showed in the DDAH-1 knockout rat. L-arginine (ARG) and NO donors were employed to elucidate the role of NO respectively. In vitro, we investigated the effects of DDAH-1 knockdown or overexpression on cell viability and mitochondrial functions, as well as modulation of ADMA/NO levels using ADMA or ARG. MAM formation was assessed by the Mitofusin2 oligomerization and the mitochondrial ubiquitin ligase (MITOL) phosphorylation. We found that DDAH-1 downregulation resulted in enhanced cell death and mitochondrial dysfunctions, accompanied by elevated ADMA and reduced NO levels. However, the recovered NO level after the ARG supplement failed to exhibit a protective effect on mitochondrial functions and partially restored cell viability. DDAH-1 overexpression prevented ROT toxicity, while ADMA treatment attenuated these protective effects. The declines of MAM formation in ROT-treated cells were exacerbated by DDAH-1 downregulation via reduced MITOL phosphorylation, which was reversed by DDAH-1 overexpression. Together, the abundant expression of DDAH-1 in nigral dopaminergic neurons may exert neuroprotective effects by maintaining MAM formation and mitochondrial function probably via ADMA, indicating the therapeutic potential of targeting DDAH-1 for PD.

摘要

黑质中多巴胺能神经元的丢失是帕金森病 (PD) 病理学的标志。二甲基精氨酸二甲氨基水解酶-1 (DDAH-1) 是负责降解对称二甲基精氨酸 (ADMA) 的关键酶,ADMA 抑制一氧化氮 (NO) 合酶,并与神经退行性变有关。线粒体功能障碍,特别是在线粒体相关内质网膜 (MAM) 中,在这个过程中起着关键作用,尽管特定的分子靶点尚未确定。本研究旨在研究 DDAH-1 在黑质纹状体多巴胺能通路和 PD 发病机制中的作用。观察了 DDAH-1 在大脑中的分布及其与多巴胺能神经元的共定位。在 DDAH-1 基因敲除大鼠中观察到多巴胺能神经元的丢失和鱼藤酮 (ROT) 注射后运动障碍加重。使用 L-精氨酸 (ARG) 和一氧化氮供体分别阐明了 NO 的作用。在体外,我们研究了 DDAH-1 敲低或过表达对细胞活力和线粒体功能的影响,以及使用 ADMA 或 ARG 调节 ADMA/NO 水平。通过 Mitofusin2 寡聚化和线粒体泛素连接酶 (MITOL) 磷酸化评估 MAM 形成。我们发现 DDAH-1 下调导致细胞死亡和线粒体功能障碍增强,同时 ADMA 升高和 NO 水平降低。然而,ARG 补充后恢复的 NO 水平未能对线粒体功能产生保护作用,并部分恢复了细胞活力。DDAH-1 过表达可防止 ROT 毒性,而 ADMA 处理可减弱这些保护作用。通过降低 MITOL 磷酸化,DDAH-1 下调加剧了 ROT 处理细胞中 MAM 形成的下降,而 DDAH-1 过表达则逆转了这一下降。总之,黑质多巴胺能神经元中丰富的 DDAH-1 表达可能通过维持 MAM 形成和线粒体功能发挥神经保护作用,可能通过 ADMA,表明靶向 DDAH-1 治疗 PD 的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/412c9fc34573/41419_2024_6772_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/5aa6570a8323/41419_2024_6772_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/15cb5d365a90/41419_2024_6772_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/229859065b76/41419_2024_6772_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/eab1658da1f4/41419_2024_6772_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/04b70aeff3a1/41419_2024_6772_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/412c9fc34573/41419_2024_6772_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/5aa6570a8323/41419_2024_6772_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/15cb5d365a90/41419_2024_6772_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/229859065b76/41419_2024_6772_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/eab1658da1f4/41419_2024_6772_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/04b70aeff3a1/41419_2024_6772_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3d8/11161642/412c9fc34573/41419_2024_6772_Fig6_HTML.jpg

相似文献

[1]
DDAH-1 maintains endoplasmic reticulum-mitochondria contacts and protects dopaminergic neurons in Parkinson's disease.

Cell Death Dis. 2024-6-7

[2]
A non-redundant role of EAAT3 for ATP synthesis mediated by GDH in dopaminergic neuronal cells: a new avenue for glutamate metabolism and protection in Parkinson's disease.

FEBS J. 2025-6

[3]
Exercise Ameliorates Dysregulated Mitochondrial Fission, Mitochondrial Respiration, and Neuronal Apoptosis in Parkinson's Disease Mice via the Irisin/AMPK/SIRT1 Pathway.

Mol Neurobiol. 2025-3-6

[4]
Mitochondrial Tumor Suppressor 1A Attenuates Myocardial Infarction Injury by Maintaining the Coupling Between Mitochondria and Endoplasmic Reticulum.

Circulation. 2025-6-30

[5]
LRRK2-mediated mitochondrial dysfunction in Parkinson's disease.

Biochem J. 2025-5-28

[6]
Selegiline for Alzheimer's disease.

Cochrane Database Syst Rev. 2003

[7]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[8]
BCKDK loss impairs mitochondrial Complex I activity and drives alpha-synuclein aggregation in models of Parkinson's disease.

Acta Neuropathol Commun. 2024-12-21

[9]
Deficient AMPK-SENP1-Sirt3 signaling impairs mitochondrial complex I function in Parkinson's disease model.

Transl Neurodegener. 2025-7-1

[10]
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.

Cochrane Database Syst Rev. 2020-10-19

引用本文的文献

[1]
Mitochondrial‑endoplasmic reticulum crosstalk: Molecular mechanisms and implications for cardiovascular disease (Review).

Mol Med Rep. 2025-10

[2]
Multi-omics analysis reveals the genetic aging landscape of Parkinson's disease.

Sci Rep. 2024-12-28

[3]
Calcium Deregulation in Neurodegeneration and Neuroinflammation in Parkinson's Disease: Role of Calcium-Storing Organelles and Sodium-Calcium Exchanger.

Cells. 2024-8-4

本文引用的文献

[1]
Knock-out of the critical nitric oxide synthase regulator DDAH1 in mice impacts amphetamine sensitivity and dopamine metabolism.

J Neural Transm (Vienna). 2023-9

[2]
Repurposing nitric oxide donating drugs in cancer therapy through immune modulation.

J Exp Clin Cancer Res. 2023-1-14

[3]
Mfn2 Regulates High Glucose-Induced MAMs Dysfunction and Apoptosis in Podocytes PERK Pathway.

Front Cell Dev Biol. 2021-12-20

[4]
Arginine Supplementation Promotes Extracellular Matrix and Metabolic Changes in Keratoconus.

Cells. 2021-8-13

[5]
Divergent Dimethylarginine Dimethylaminohydrolase Isoenzyme Expression in the Central Nervous System.

Cell Mol Neurobiol. 2022-10

[6]
Nitric Oxide as a Target for Phytochemicals in Anti-Neuroinflammatory Prevention Therapy.

Int J Mol Sci. 2021-4-30

[7]
Endogenous asymmetric dimethylarginine accumulation precipitates the cardiac and mitochondrial dysfunctions in type 1 diabetic rats.

Eur J Pharmacol. 2021-7-5

[8]
Long lasting protective effects of early l-arginine treatment on endothelium in an in vitro study.

Clin Nutr. 2021-4

[9]
DDAH-1, via regulation of ADMA levels, protects against ischemia-induced blood-brain barrier leakage.

Lab Invest. 2021-7

[10]
The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses.

Autophagy. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索