Suppr超能文献

脯氨酰羟化酶 EGLN3 通过 NF-κB 依赖的途径调节成肌细胞分化。

Prolyl hydroxylase EGLN3 regulates skeletal myoblast differentiation through an NF-kappaB-dependent pathway.

机构信息

Department of Medicine, Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.

出版信息

J Biol Chem. 2010 Mar 19;285(12):8927-35. doi: 10.1074/jbc.M109.078600. Epub 2010 Jan 10.

Abstract

The egg-laying abnormal-9 (EGLN) prolyl hydroxylases have been shown to regulate the stability and thereby the activity of the alpha subunits of hypoxia-inducible factor (HIF) through its ability to catalyze their hydroxylation. We have previously shown that EGLN3 promotes differentiation of C2C12 skeletal myoblasts. However, the mechanism underlying this effect remains to be fully elucidated. Here, we report that exposure of C2C12 cells to dimethyl oxalylglycine (DMOG), desferrioxamine, and hypoxia, all inhibitors of prolyl hydroxylase activity, led to repression of C2C12 myogenic differentiation. Inactivation of HIF by expression of a HIF dominant-negative mutant or deletion of HIF-1alpha by RNA interference did not affect the inhibitory effect of DMOG, suggesting that the effect of DMOG is HIF-independent. Pharmacologic inactivation of EGLN3 hydroxylase resulted in activation of the canonical NF-kappaB pathway. The inhibitory effect of DMOG on myogenic differentiation was markedly impaired in C2C12 cells expressing a dominant-negative mutant of IkappaBalpha. Exogenous expression of wild-type EGLN3, but not its catalytically inactive mutant, significantly inhibited NF-kappaB activation induced by overexpressed TRAF2 or IkappaB kinase 2. In contrast, deletion of EGLN3 by small interfering RNAs led to activation of NF-kappaB. These data suggest that EGLN3 is a negative regulator of NF-kappaB, and its prolyl hydroxylase activity is required for this effect. Furthermore, wild-type EGLN3, but not its catalytically inactive mutant, potentiated myogenic differentiation. This study demonstrates a novel role for EGLN3 in the regulation of NF-kappaB and suggests that it is involved in mediating myogenic differentiation, which is HIF-independent.

摘要

EGLN 家族的脯氨酰羟化酶能够通过催化其羟化反应来调节缺氧诱导因子 (HIF) 的α亚基的稳定性,从而调节其活性。我们之前已经证明,EGLN3 可促进 C2C12 成肌细胞的分化。然而,这种作用的机制仍有待充分阐明。在这里,我们报告说,C2C12 细胞暴露于二甲基草酰甘氨酸 (DMOG)、去铁胺和低氧,所有这些都是脯氨酰羟化酶活性的抑制剂,导致 C2C12 成肌分化受到抑制。表达 HIF 显性负突变体或通过 RNA 干扰删除 HIF-1α 使 HIF 失活并不影响 DMOG 的抑制作用,这表明 DMOG 的作用是不依赖 HIF 的。EGLN3 羟化酶的药理学失活导致经典 NF-κB 途径的激活。在表达 IkappaBalpha 显性负突变体的 C2C12 细胞中,DMOG 对成肌分化的抑制作用明显受损。外源性表达野生型 EGLN3,但不是其催化失活突变体,可显著抑制过表达的 TRAF2 或 IkappaB 激酶 2 诱导的 NF-κB 激活。相反,通过小干扰 RNA 敲低 EGLN3 导致 NF-κB 激活。这些数据表明,EGLN3 是 NF-κB 的负调节剂,其脯氨酰羟化酶活性是必需的。此外,野生型 EGLN3,但不是其催化失活突变体,增强了成肌分化。本研究证明了 EGLN3 在 NF-κB 调节中的新作用,并表明它参与介导与 HIF 无关的成肌分化。

相似文献

1
Prolyl hydroxylase EGLN3 regulates skeletal myoblast differentiation through an NF-kappaB-dependent pathway.
J Biol Chem. 2010 Mar 19;285(12):8927-35. doi: 10.1074/jbc.M109.078600. Epub 2010 Jan 10.
2
EGLN3 prolyl hydroxylase regulates skeletal muscle differentiation and myogenin protein stability.
J Biol Chem. 2007 Apr 27;282(17):12410-8. doi: 10.1074/jbc.M608748200. Epub 2007 Mar 6.
3
EGLN3 inhibition of NF-κB is mediated by prolyl hydroxylase-independent inhibition of IκB kinase γ ubiquitination.
Mol Cell Biol. 2013 Aug;33(15):3050-61. doi: 10.1128/MCB.00273-13. Epub 2013 Jun 3.
4
Inhibition of prolyl hydroxylase domain-containing protein suppressed lipopolysaccharide-induced TNF-alpha expression.
Arterioscler Thromb Vasc Biol. 2009 Dec;29(12):2132-7. doi: 10.1161/ATVBAHA.109.196071. Epub 2009 Sep 17.
5
Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) transcriptional activity by the HIF prolyl hydroxylase EGLN1.
J Biol Chem. 2005 Nov 11;280(45):38102-7. doi: 10.1074/jbc.M504342200. Epub 2005 Sep 12.
6
Prolyl hydroxylase-1 regulates hepatocyte apoptosis in an NF-κB-dependent manner.
Biochem Biophys Res Commun. 2016 Jun 3;474(3):579-586. doi: 10.1016/j.bbrc.2016.04.085. Epub 2016 Apr 27.
9
Inhibition of Prolyl Hydroxylase Attenuates Fas Ligand-Induced Apoptosis and Lung Injury in Mice.
Am J Respir Cell Mol Biol. 2016 Dec;55(6):878-888. doi: 10.1165/rcmb.2015-0266OC.

引用本文的文献

1
Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets.
MedComm (2020). 2024 Oct 15;5(11):e786. doi: 10.1002/mco2.786. eCollection 2024 Nov.
6
Inactivation of EGLN3 hydroxylase facilitates Erk3 degradation via autophagy and impedes lung cancer growth.
Oncogene. 2022 Mar;41(12):1752-1766. doi: 10.1038/s41388-022-02203-2. Epub 2022 Feb 5.
7
Obesity Shapes Metabolism in the Tumor Microenvironment to Suppress Anti-Tumor Immunity.
Cell. 2020 Dec 23;183(7):1848-1866.e26. doi: 10.1016/j.cell.2020.11.009. Epub 2020 Dec 9.
8
Novel Role for Tranilast in Regulating NLRP3 Ubiquitination, Vascular Inflammation, and Atherosclerosis.
J Am Heart Assoc. 2020 Jun 16;9(12):e015513. doi: 10.1161/JAHA.119.015513. Epub 2020 Jun 1.
9
Abrogation of esophageal carcinoma development in miR-31 knockout rats.
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6075-6085. doi: 10.1073/pnas.1920333117. Epub 2020 Mar 2.
10
Prolyl Hydroxylase Domain-2 Protein Regulates Lipopolysaccharide-Induced Vascular Inflammation.
Am J Pathol. 2019 Jan;189(1):200-213. doi: 10.1016/j.ajpath.2018.09.012. Epub 2018 Oct 17.

本文引用的文献

1
NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma.
Cancer Cell. 2008 Nov 4;14(5):369-81. doi: 10.1016/j.ccr.2008.10.006.
2
Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway.
Mol Cell. 2008 May 23;30(4):393-402. doi: 10.1016/j.molcel.2008.04.009.
3
Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways.
Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3368-73. doi: 10.1073/pnas.0711591105. Epub 2008 Feb 25.
6
Shared principles in NF-kappaB signaling.
Cell. 2008 Feb 8;132(3):344-62. doi: 10.1016/j.cell.2008.01.020.
7
Role and regulation of prolyl hydroxylase domain proteins.
Cell Death Differ. 2008 Apr;15(4):635-41. doi: 10.1038/cdd.2008.10. Epub 2008 Feb 15.
8
HIF-1alpha regulates epithelial inflammation by cell autonomous NFkappaB activation and paracrine stromal remodeling.
Blood. 2008 Apr 1;111(7):3343-54. doi: 10.1182/blood-2007-10-115758. Epub 2008 Jan 16.
9
Harnessing hypoxic adaptation to prevent, treat, and repair stroke.
J Mol Med (Berl). 2007 Dec;85(12):1331-8. doi: 10.1007/s00109-007-0283-1. Epub 2007 Nov 28.
10
Keeping the engine primed: HIF factors as key regulators of cardiac metabolism and angiogenesis during ischemia.
J Mol Med (Berl). 2007 Dec;85(12):1309-15. doi: 10.1007/s00109-007-0279-x. Epub 2007 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验