Institute for Enzyme Research, University of Tokushima, Kuramotocho 3-chome, Tokushima 770-8503.
Institute for Enzyme Research, University of Tokushima, Kuramotocho 3-chome, Tokushima 770-8503.
J Biol Chem. 2010 Mar 26;285(13):9971-9980. doi: 10.1074/jbc.M109.078717. Epub 2010 Jan 19.
Lipoate-protein ligase A (LplA) catalyzes the attachment of lipoic acid to lipoate-dependent enzymes by a two-step reaction: first the lipoate adenylation reaction and, second, the lipoate transfer reaction. We previously determined the crystal structure of Escherichia coli LplA in its unliganded form and a binary complex with lipoic acid (Fujiwara, K., Toma, S., Okamura-Ikeda, K., Motokawa, Y., Nakagawa, A., and Taniguchi, H. (2005) J Biol. Chem. 280, 33645-33651). Here, we report two new LplA structures, LplA.lipoyl-5'-AMP and LplA.octyl-5'-AMP.apoH-protein complexes, which represent the post-lipoate adenylation intermediate state and the pre-lipoate transfer intermediate state, respectively. These structures demonstrate three large scale conformational changes upon completion of the lipoate adenylation reaction: movements of the adenylate-binding and lipoate-binding loops to maintain the lipoyl-5'-AMP reaction intermediate and rotation of the C-terminal domain by about 180 degrees . These changes are prerequisites for LplA to accommodate apoprotein for the second reaction. The Lys(133) residue plays essential roles in both lipoate adenylation and lipoate transfer reactions. Based on structural and kinetic data, we propose a reaction mechanism driven by conformational changes.
脂酰基辅酶 A 连接酶 A(LplA)通过两步反应催化脂酰基辅酶 A 的连接:首先是脂酰腺嘌呤反应,其次是脂酰转移反应。我们之前确定了大肠杆菌 LplA 在无配体形式和与脂酸的二元复合物中的晶体结构(Fujiwara,K.,Toma,S.,Okamura-Ikeda,K.,Motokawa,Y.,Nakagawa,A.,和 Taniguchi,H.(2005)J Biol.Chem.280,33645-33651)。在这里,我们报告了两种新的 LplA 结构,LplA.lipoyl-5'-AMP 和 LplA.octyl-5'-AMP.apoH-蛋白复合物,分别代表了脂酰腺嘌呤反应后的中间状态和脂酰转移反应前的中间状态。这些结构显示了在完成脂酰腺嘌呤反应后发生的三个大规模构象变化:腺嘌呤结合环和脂酰结合环的运动以维持脂酰-5'-AMP 反应中间体,以及 C 末端结构域的旋转约 180 度。这些变化是 LplA 适应第二反应中脱辅基蛋白所必需的。Lys(133)残基在脂酰腺嘌呤反应和脂酰转移反应中都发挥着重要作用。基于结构和动力学数据,我们提出了一个由构象变化驱动的反应机制。