Suppr超能文献

用于改变蛋白质功能的构象偏向性突变的计算设计。

Computational design of conformation-biasing mutations to alter protein functions.

作者信息

Cavanagh Peter E, Xue Andrew G, Dai Shizhong, Qiang Albert, Matsui Tsutomu, Ting Alice Y

机构信息

Department of Biochemistry, Stanford University.

Biophysics Program, Stanford University.

出版信息

bioRxiv. 2025 Jun 2:2025.05.03.652001. doi: 10.1101/2025.05.03.652001.

Abstract

Most natural proteins alternate between distinct conformational states, each associated with specific functions. Intentional manipulation of conformational equilibria could lead to improved or altered protein properties. Here we develop Conformational Biasing (CB), a rapid and streamlined computational method that utilizes contrastive scoring by inverse folding models to predict variants biased towards desired conformational states. We validated CB across seven diverse deep mutational scanning datasets, successfully predicting variants of K-Ras, SARS-CoV-2 spike, β2 adrenergic receptor, and Src kinase with improved conformation-specific functions including enhanced effector binding or enzymatic activity. Furthermore, applying CB to lipoic acid ligase, a conformation-switching bacterial enzyme that has been used for the development of protein labeling technologies, revealed a previously unknown mechanism for conformational gating of sequence-specificity. Variants biased toward the "open" conformation were highly promiscuous, while "closed" conformation-biased variants were even more specific than wild-type, enhancing the utility of LplA for site-specific protein labeling with fluorophores in living cells. The speed, simplicity, and versatility of CB (available at: https://github.com/alicetinglab/ConformationalBiasing/) suggest that it may be broadly applicable for understanding and engineering protein conformational dynamics, with implications for basic research, biotechnology, and medicine.

摘要

大多数天然蛋白质在不同的构象状态之间交替,每种构象都与特定功能相关。对构象平衡进行有意调控可能会改善或改变蛋白质的性质。在此,我们开发了构象偏向(CB)方法,这是一种快速且简化的计算方法,它利用反向折叠模型的对比评分来预测偏向所需构象状态的变体。我们在七个不同的深度突变扫描数据集上验证了CB,成功预测了K-Ras、SARS-CoV-2刺突蛋白、β2肾上腺素能受体和Src激酶的变体,这些变体具有改善的构象特异性功能,包括增强的效应物结合或酶活性。此外,将CB应用于硫辛酸连接酶,一种用于蛋白质标记技术开发的构象转换细菌酶,揭示了一种以前未知的序列特异性构象门控机制。偏向“开放”构象的变体具有高度混杂性,而偏向“封闭”构象的变体比野生型更具特异性,增强了LplA在活细胞中用荧光团进行位点特异性蛋白质标记的效用。CB的速度、简单性和通用性(可在https://github.com/alicetinglab/ConformationalBiasing/获取)表明,它可能广泛适用于理解和工程化蛋白质构象动力学,对基础研究、生物技术和医学具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/244c/12157495/f8d4c36aee9c/nihpp-2025.05.03.652001v3-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验