Division of Medical Genetics and Department of Biostatistics, University of Washington, Seattle, WA 98195-7720, USA.
Genet Epidemiol. 2010 May;34(4):344-53. doi: 10.1002/gepi.20490.
Identification of the genetic basis of common traits may be hindered by underlying complex genetic architectures that are inadequately captured by existing models, including both multiallelic and multilocus modes of inheritance (MOI). One useful approach for localizing genes underlying continuous complex traits is the joint oligogenic linkage and segregation analysis implemented in the package Loki. The method uses reversible jump Markov chain Monte Carlo to eliminate the need to prespecify the number of quantitative trait loci (QTLs) in the trait model, thus providing posterior distributions for the number of QTLs in a Bayesian framework. The current implementation assumes QTLs are diallelic, and therefore can overestimate the number of linked QTLs in the presence of a multiallelic QTL. To address the possibility of multiple alleles, we extended the QTL model to allow for a variable number of additive alleles at each locus. Application to simulated data shows that, under a diallelic MOI, the multiallelic and diallelic analysis models give similar results. Under a multiallelic MOI, the multiallelic analysis model provides better mixing and improved convergence, and leads to a more accurate estimate of the underlying trait MOI and model parameter values, than does the diallelic model. Application to real data shows the multiallelic model results in fewer estimated linked QTLs and that the predominant QTL model is similar to one of two predominant models estimated from the diallelic analysis. Our results indicate that use of a multiallelic analysis model can lead to better understanding of the genetic architecture underlying complex traits.
常见性状的遗传基础识别可能会受到复杂遗传结构的阻碍,这些结构不能被现有模型充分捕捉,包括多等位基因和多位点遗传模式 (MOI)。一种用于定位连续复杂性状遗传基础的有用方法是在 Loki 包中实施的联合寡基因连锁和分离分析。该方法使用可逆跳跃马尔可夫链蒙特卡罗来消除在性状模型中预先指定数量的数量性状位点 (QTL) 的需要,从而在贝叶斯框架中提供 QTL 数量的后验分布。当前的实现假设 QTL 是双等位基因的,因此在存在多等位基因 QTL 的情况下可能会高估连锁 QTL 的数量。为了解决多个等位基因的可能性,我们扩展了 QTL 模型,允许每个位点的加性等位基因数量可变。对模拟数据的应用表明,在双等位基因 MOI 下,多等位基因和双等位基因分析模型给出了相似的结果。在多等位基因 MOI 下,多等位基因分析模型提供了更好的混合和改进的收敛性,并导致对潜在性状 MOI 和模型参数值的更准确估计,而不是双等位基因模型。对真实数据的应用表明,多等位基因模型导致估计的连锁 QTL 较少,并且主要的 QTL 模型与从双等位基因分析估计的两个主要模型之一相似。我们的结果表明,使用多等位基因分析模型可以更好地理解复杂性状的遗传结构。