Suppr超能文献

终纹床核投射到腹外侧水管周围灰质神经元活动的功能相关性。

Functional correlates of activity in neurons projecting from the lamina terminalis to the ventrolateral periaqueductal gray.

机构信息

Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.

出版信息

Eur J Neurosci. 2009 Dec;30(12):2347-55. doi: 10.1111/j.1460-9568.2009.07024.x. Epub 2009 Dec 10.

Abstract

The lamina terminalis (LT) consists of the organum vasculosum of the LT (OVLT), the median preoptic nucleus (MnPO) and the subfornical organ (SFO). All subdivisions of the LT project to the ventrolateral periaqueductal gray (vlPAG). The LT and the vlPAG are implicated in several homeostatic and behavioral functions, including body fluid homeostasis, thermoregulation and the regulation of sleep and waking. By combining visualization of c-Fos protein and retrograde neuroanatomical tracer we have examined the functional correlates of LT-vlPAG projection neurons. Rats were injected with retrograde tracer into the vlPAG and, following a 1-week recovery period, they were subjected to either hypertonic saline administration (0.5 M NaCl, 1 mL/100 g i.p.), 24-h water deprivation, isoproterenol administration (increases circulating angiotensin II; 50 microg/kg s.c.), heat exposure (39 degrees C for 60 min) or permitted 180 min spontaneous sleep. Retrogradely labeled neurons from the vlPAG and double-labelled neurons were then identified and quantified throughout the LT. OVLT-vlPAG projection neurons were most responsive to hypertonic saline and water deprivation. SFO-vlPAG projection neurons were most active following isoproterenol administration, and MnPO-vlPAG projection neurons displayed significantly more Fos immunostaining following water deprivation, heat exposure and sleep. These results support the existence of functional subdivisions of LT-vlPAG-projecting neurons, and indicate three patterns of activity that correspond to thermal and sleep wake regulation, osmotic or hormonal stimuli.

摘要

终板(LT)由 LT 的血管器官(OVLT)、中脑视前核(MnPO)和穹窿下器官(SFO)组成。LT 的所有细分都投射到腹外侧导水管周围灰质(vlPAG)。LT 和 vlPAG 参与了几种体内平衡和行为功能,包括体液平衡、体温调节和睡眠与觉醒的调节。通过结合 c-Fos 蛋白的可视化和逆行神经解剖示踪剂,我们研究了 LT-vlPAG 投射神经元的功能相关性。将逆行示踪剂注射到 vlPAG 中,在 1 周的恢复期后,大鼠接受高渗盐水(0.5 M NaCl,1 mL/100 g ip)给药、24 小时水剥夺、异丙肾上腺素给药(增加循环血管紧张素 II;50μg/kg sc)、热暴露(39°C 60 分钟)或允许 180 分钟自发睡眠。然后在整个 LT 中识别和量化来自 vlPAG 的逆行标记神经元和双标记神经元。OVLT-vlPAG 投射神经元对高渗盐水和水剥夺最敏感。SFO-vlPAG 投射神经元在异丙肾上腺素给药后最活跃,MnPO-vlPAG 投射神经元在水剥夺、热暴露和睡眠后显示出明显更多的 Fos 免疫染色。这些结果支持 LT-vlPAG 投射神经元存在功能细分,并表明对应于体温和睡眠觉醒调节、渗透或激素刺激的三种活动模式。

相似文献

1
Functional correlates of activity in neurons projecting from the lamina terminalis to the ventrolateral periaqueductal gray.
Eur J Neurosci. 2009 Dec;30(12):2347-55. doi: 10.1111/j.1460-9568.2009.07024.x. Epub 2009 Dec 10.
6
The trajectory of sensory pathways from the lamina terminalis to the insular and cingulate cortex: a neuroanatomical framework for the generation of thirst.
Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1390-401. doi: 10.1152/ajpregu.00869.2007. Epub 2008 Jan 30.
7
Integration of Hypernatremia and Angiotensin II by the Organum Vasculosum of the Lamina Terminalis Regulates Thirst.
J Neurosci. 2020 Mar 4;40(10):2069-2079. doi: 10.1523/JNEUROSCI.2208-19.2020. Epub 2020 Jan 31.
8
Induction of c-fos in forebrain circumventricular organs after renal artery stenosis.
Brain Res. 2004 Jan 2;995(1):109-17. doi: 10.1016/j.brainres.2003.09.059.
9
Activation of kidney-directed neurons in the lamina terminalis by alterations in body fluid balance.
Am J Physiol Regul Integr Comp Physiol. 2001 Nov;281(5):R1637-46. doi: 10.1152/ajpregu.2001.281.5.R1637.

引用本文的文献

1
Hypothalamic neural circuits regulating energy expenditure.
Vitam Horm. 2025;127:79-124. doi: 10.1016/bs.vh.2024.07.004. Epub 2024 Jul 20.
2
Preoptic BRS3 neurons increase body temperature and heart rate via multiple pathways.
Cell Metab. 2021 Jul 6;33(7):1389-1403.e6. doi: 10.1016/j.cmet.2021.05.001. Epub 2021 May 25.
4
Preoptic Area Modulation of Arousal in Natural and Drug Induced Unconscious States.
Front Neurosci. 2021 Feb 12;15:644330. doi: 10.3389/fnins.2021.644330. eCollection 2021.
5
Neural control of fasting-induced torpor in mice.
Sci Rep. 2019 Oct 29;9(1):15462. doi: 10.1038/s41598-019-51841-2.
6
Circuit mechanisms and computational models of REM sleep.
Neurosci Res. 2019 Mar;140:77-92. doi: 10.1016/j.neures.2018.08.003. Epub 2018 Aug 15.
7
Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice.
J Physiol. 2017 Oct 15;595(20):6569-6583. doi: 10.1113/JP274667. Epub 2017 Sep 13.
8
Microglial Acid Sensing Regulates Carbon Dioxide-Evoked Fear.
Biol Psychiatry. 2016 Oct 1;80(7):541-51. doi: 10.1016/j.biopsych.2016.04.022. Epub 2016 May 12.
9
Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states.
Front Syst Neurosci. 2015 Aug 4;9:111. doi: 10.3389/fnsys.2015.00111. eCollection 2015.
10
Deep brain stimulation for the treatment of resistant hypertension.
Curr Hypertens Rep. 2014 Nov;16(11):493. doi: 10.1007/s11906-014-0493-1.

本文引用的文献

1
Hypothalamic regulation of sleep and arousal.
Ann N Y Acad Sci. 2008;1129:275-86. doi: 10.1196/annals.1417.027.
2
Central control of thermogenesis in mammals.
Exp Physiol. 2008 Jul;93(7):773-97. doi: 10.1113/expphysiol.2007.041848. Epub 2008 May 9.
3
The brain as an endocrine target for Peptide hormones.
Trends Endocrinol Metab. 1998 Nov;9(9):349-54. doi: 10.1016/s1043-2760(98)00092-7.
4
Preoptic mechanism for cold-defensive responses to skin cooling.
J Physiol. 2008 May 15;586(10):2611-20. doi: 10.1113/jphysiol.2008.152686. Epub 2008 Apr 3.
5
Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain.
Neuroscience. 2007 Nov 30;150(1):104-20. doi: 10.1016/j.neuroscience.2007.05.055. Epub 2007 Sep 12.
6
Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis.
J Physiol Paris. 2006 Nov-Dec;100(5-6):271-83. doi: 10.1016/j.jphysparis.2007.05.006. Epub 2007 Jun 8.
7
EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses.
Nat Neurosci. 2007 Sep;10(9):1131-3. doi: 10.1038/nn1949. Epub 2007 Aug 5.
8
Homeostatic regulation of sleep: a role for preoptic area neurons.
J Neurosci. 2006 Sep 13;26(37):9426-33. doi: 10.1523/JNEUROSCI.2012-06.2006.
10
Fos activation in hypothalamic neurons during cold or warm exposure: projections to periaqueductal gray matter.
Neuroscience. 2005;133(4):1039-46. doi: 10.1016/j.neuroscience.2005.03.044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验