Suppr超能文献

中脑视前区谷氨酸能神经元促进小鼠体温调节性散热和水的摄入。

Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice.

机构信息

Department of Neurology, Beth Israel-Deaconess Medical Center - Harvard Medical School, Boston, MA, USA.

The Heart Research Institute, Sydney, Australia.

出版信息

J Physiol. 2017 Oct 15;595(20):6569-6583. doi: 10.1113/JP274667. Epub 2017 Sep 13.

Abstract

KEY POINTS

Glutamatergic neurons in the median preoptic area were stimulated using genetically targeted Channelrhodopsin 2 in transgenic mice. Stimulation of glutamatergic median preoptic area neurons produced a profound hypothermia due to cutaneous vasodilatation. Stimulation also produced drinking behaviour that was inhibited as water was ingested, suggesting pre-systemic feedback gating of drinking. Anatomical mapping of the stimulation sites showed that sites associated with hypothermia were more anteroventral than those associated with drinking, although there was substantial overlap.

ABSTRACT

The median preoptic nucleus (MnPO) serves an important role in the integration of water/electrolyte homeostasis and thermoregulation, but we have a limited understanding these functions at a cellular level. Using Cre-Lox genetic targeting of Channelrhodospin 2 in VGluT2 transgenic mice, we examined the effect of glutamatergic MnPO neuron stimulation in freely behaving mice while monitoring drinking behaviour and core temperature. Stimulation produced a strong hypothermic response in 62% (13/21) of mice (core temperature: -4.6 ± 0.5°C, P = 0.001 vs. controls) caused by cutaneous vasodilatation. Stimulating glutamatergic MnPO neurons also produced robust drinking behaviour in 82% (18/22) of mice. Mice that drank during stimulation consumed 912 ± 163 μl (n = 8) during a 20 min trial in the dark phase, but markedly less during the light phase (421 ± 83 μl, P = 0.0025). Also, drinking during stimulation was inhibited as water was ingested, suggesting pre-systemic feedback gating of drinking. Both hypothermia and drinking during stimulation occurred in 50% of mice tested. Anatomical mapping of the stimulation sites showed that sites associated with hypothermia were more anteroventral than those associated with drinking, although there was substantial overlap. Thus, activation of separate but overlapping populations of glutamatergic MnPO neurons produces effects on drinking and autonomic thermoregulatory mechanisms, providing a structural basis for their frequently being coordinated (e.g. during hyperthermia).

摘要

要点

使用转基因小鼠中基因靶向的 Channelrhodopsin 2 刺激中脑prefrontal 区的谷氨酸能神经元。刺激谷氨酸能中脑prefrontal 区神经元会导致皮肤血管扩张,从而产生明显的体温过低。刺激还产生了饮水行为,但随着水的摄入而被抑制,这表明饮水的前系统反馈门控。刺激部位的解剖学映射显示,与低温相关的部位比与饮水相关的部位更靠前腹侧,尽管存在大量重叠。

摘要

中脑prefrontal 核(MnPO)在水/电解质稳态和体温调节的整合中起着重要作用,但我们对这些功能在细胞水平上的理解有限。使用 Cre-Lox 基因靶向 VGluT2 转基因小鼠中的 Channelrhodospin 2,我们在自由活动的小鼠中检查了刺激谷氨酸能 MnPO 神经元的效果,同时监测了饮水行为和核心体温。刺激在 62%(13/21)的小鼠中产生了强烈的低温反应(核心温度:-4.6±0.5°C,P=0.001 与对照组相比),这是由皮肤血管扩张引起的。刺激谷氨酸能 MnPO 神经元也在 82%(18/22)的小鼠中产生了强烈的饮水行为。在黑暗期 20 分钟的试验中,刺激期间饮水的小鼠消耗了 912±163μl(n=8),但在光照期明显减少(421±83μl,P=0.0025)。此外,由于水的摄入,刺激期间的饮水被抑制,这表明饮水的前系统反馈门控。在测试的 50%的小鼠中,既出现了低温又出现了刺激期间的饮水。刺激部位的解剖学映射显示,与低温相关的部位比与饮水相关的部位更靠前腹侧,尽管存在大量重叠。因此,激活分离但重叠的谷氨酸能 MnPO 神经元群体会对饮水和自主体温调节机制产生影响,为它们经常协调(例如在发热时)提供了结构基础。

相似文献

1
Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice.
J Physiol. 2017 Oct 15;595(20):6569-6583. doi: 10.1113/JP274667. Epub 2017 Sep 13.
2
Reciprocal Control of Drinking Behavior by Median Preoptic Neurons in Mice.
J Neurosci. 2016 Aug 3;36(31):8228-37. doi: 10.1523/JNEUROSCI.1244-16.2016.
4
EP3R-Expressing Glutamatergic Preoptic Neurons Mediate Inflammatory Fever.
J Neurosci. 2020 Mar 18;40(12):2573-2588. doi: 10.1523/JNEUROSCI.2887-19.2020. Epub 2020 Feb 20.
5
Genetic identification of preoptic neurons that regulate body temperature in mice.
Temperature (Austin). 2022 Jan 9;9(1):14-22. doi: 10.1080/23328940.2021.1993734. eCollection 2022.
6
Neurokinin 3 Receptor-Expressing Neurons in the Median Preoptic Nucleus Modulate Heat-Dissipation Effectors in the Female Rat.
Endocrinology. 2015 Jul;156(7):2552-62. doi: 10.1210/en.2014-1974. Epub 2015 Mar 31.
7
Two Ascending Thermosensory Pathways from the Lateral Parabrachial Nucleus That Mediate Behavioral and Autonomous Thermoregulation.
J Neurosci. 2023 Jul 12;43(28):5221-5240. doi: 10.1523/JNEUROSCI.0643-23.2023. Epub 2023 Jun 20.
8
Median preoptic GABA and glutamate neurons exert differential control over sleep behavior.
Curr Biol. 2022 May 9;32(9):2011-2021.e3. doi: 10.1016/j.cub.2022.03.039. Epub 2022 Apr 5.
9
Thirst-associated preoptic neurons encode an aversive motivational drive.
Science. 2017 Sep 15;357(6356):1149-1155. doi: 10.1126/science.aan6747.

引用本文的文献

1
Preoptic EP3R neurons constitute a two-way switch for fever and torpor.
Nature. 2025 May 28. doi: 10.1038/s41586-025-09056-1.
2
Effects of menopause on temperature regulation.
Temperature (Austin). 2025 Apr 23;12(2):92-132. doi: 10.1080/23328940.2025.2484499. eCollection 2025.
3
Altered thermal preference by preoptic estrogen receptor alpha neurons in postpartum females.
Mol Metab. 2025 Mar;93:102108. doi: 10.1016/j.molmet.2025.102108. Epub 2025 Feb 3.
4
Heat acclimation defense against exertional heat stroke by improving the function of preoptic TRPV1 neurons.
Theranostics. 2025 Jan 1;15(4):1376-1398. doi: 10.7150/thno.101422. eCollection 2025.
5
Leptin receptor neurons in the dorsomedial hypothalamus require distinct neuronal subsets for thermogenesis and weight loss.
Metabolism. 2025 Feb;163:156100. doi: 10.1016/j.metabol.2024.156100. Epub 2024 Dec 12.
6
Thermally induced neuronal plasticity in the hypothalamus mediates heat tolerance.
Nat Neurosci. 2025 Feb;28(2):346-360. doi: 10.1038/s41593-024-01830-0. Epub 2024 Dec 9.
7
Central Mechanisms of Thermoregulation and Fever in Mammals.
Adv Exp Med Biol. 2024;1461:141-159. doi: 10.1007/978-981-97-4584-5_10.
8
A parabrachial-hypothalamic parallel circuit governs cold defense in mice.
Nat Commun. 2023 Aug 15;14(1):4924. doi: 10.1038/s41467-023-40504-6.
10
Primate preoptic neurons drive hypothermia and cold defense.
Innovation (Camb). 2022 Dec 5;4(1):100358. doi: 10.1016/j.xinn.2022.100358. eCollection 2023 Jan 30.

本文引用的文献

1
A hypothalamic circuit that controls body temperature.
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):2042-2047. doi: 10.1073/pnas.1616255114. Epub 2017 Jan 4.
2
Warm-Sensitive Neurons that Control Body Temperature.
Cell. 2016 Sep 22;167(1):47-59.e15. doi: 10.1016/j.cell.2016.08.028. Epub 2016 Sep 8.
3
Reciprocal Control of Drinking Behavior by Median Preoptic Neurons in Mice.
J Neurosci. 2016 Aug 3;36(31):8228-37. doi: 10.1523/JNEUROSCI.1244-16.2016.
4
Central control of body temperature.
F1000Res. 2016 May 12;5. doi: 10.12688/f1000research.7958.1. eCollection 2016.
6
Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus.
Am J Physiol Regul Integr Comp Physiol. 2016 Jan 1;310(1):R41-54. doi: 10.1152/ajpregu.00094.2015. Epub 2015 Oct 21.
8
An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger.
Nature. 2014 Mar 13;507(7491):238-42. doi: 10.1038/nature12956. Epub 2014 Feb 2.
9
Role of an excitatory preoptic-raphé pathway in febrile vasoconstriction of the rat's tail.
Am J Physiol Regul Integr Comp Physiol. 2013 Dec 15;305(12):R1479-89. doi: 10.1152/ajpregu.00401.2013. Epub 2013 Oct 16.
10
Brain regions influenced by the lateral parabrachial nucleus in angiotensin II-induced water intake.
Neuroscience. 2013 Nov 12;252:410-9. doi: 10.1016/j.neuroscience.2013.08.027. Epub 2013 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验