Department of Comparative Medicine, The University of Tennessee, Knoxville, TN 37996, USA.
Epidemiol Infect. 2010 Jun;138(6):898-906. doi: 10.1017/S0950268810000154. Epub 2010 Jan 22.
Three time-series models (regression, decomposition, and Box-Jenkins autoregressive integrated moving averages) were applied to national surveillance data for campylobacteriosis with the goal of disease forecasting in three US states. Datasets spanned 1998-2007 for Minnesota and Oregon, and 1999-2007 for Georgia. Year 2008 was used to validate model results. Mean absolute percent error, mean square error and coefficient of determination (R2) were the main evaluation fit statistics. Results showed that decomposition best captured the temporal patterns in disease risk. Training dataset R2 values were 72.2%, 76.3% and 89.9% and validation year R2 values were 66.2%, 52.6% and 79.9% respectively for Georgia, Oregon and Minnesota. All three techniques could be utilized to predict monthly risk of infection for Campylobacter sp. However, the decomposition model provided the fastest, most accurate, user-friendly method. Use of this model can assist public health personnel in predicting epidemics and developing disease intervention strategies.
三种时间序列模型(回归、分解和 Box-Jenkins 自回归综合移动平均)被应用于弯曲菌病的国家监测数据,以实现美国三个州的疾病预测。数据集涵盖了明尼苏达州和俄勒冈州的 1998-2007 年和佐治亚州的 1999-2007 年。2008 年用于验证模型结果。平均绝对百分比误差、均方误差和决定系数(R2)是主要的评估拟合统计量。结果表明,分解模型最好地捕捉了疾病风险的时间模式。训练数据集的 R2 值分别为 72.2%、76.3%和 89.9%,验证年的 R2 值分别为 66.2%、52.6%和 79.9%,分别代表佐治亚州、俄勒冈州和明尼苏达州。所有三种技术都可用于预测弯曲菌属感染的月度风险。然而,分解模型提供了最快、最准确、用户友好的方法。该模型的使用可以帮助公共卫生人员预测疫情并制定疾病干预策略。