Sumi Ayako, Hemilä Harri, Mise Keiji, Kobayashi Nobumichi
Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
APMIS. 2009 Aug;117(8):614-22. doi: 10.1111/j.1600-0463.2009.02507.x.
Human campylobacteriosis is a common bacterial cause of gastrointestinal infections. In this study, we tested whether spectral analysis based on the maximum entropy method (MEM) is useful in predicting the incidence of campylobacteriosis in five provinces in Finland, which has been accumulating good quality incidence data under the surveillance program for water- and food-borne infections. On the basis of the spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data in the years 2000-2005. The optimum least squares fitting (LSF) curve calculated by using the periodic modes reproduced the underlying variation of the incidence data. We extrapolated the LSF curve to the years 2006 and 2007 and predicted the incidence of campylobacteriosis. Our study suggests that MEM spectral analysis allows us to model temporal variations of the disease incidence with multiple periodic modes much more effectively than using the Fourier model, which has been previously used for modeling seasonally varying incidence data.
人类弯曲杆菌病是胃肠道感染常见的细菌病因。在本研究中,我们测试了基于最大熵方法(MEM)的频谱分析是否有助于预测芬兰五个省份弯曲杆菌病的发病率,该国在水源性和食源性感染监测计划下积累了高质量的发病率数据。基于频谱分析,我们确定了解释2000 - 2005年发病率数据潜在变化的周期性模式。使用这些周期性模式计算出的最优最小二乘拟合(LSF)曲线再现了发病率数据的潜在变化。我们将LSF曲线外推至2006年和2007年,并预测了弯曲杆菌病的发病率。我们的研究表明,与之前用于模拟季节性变化发病率数据的傅里叶模型相比,MEM频谱分析能让我们更有效地用多种周期性模式对疾病发病率的时间变化进行建模。