Suppr超能文献

运用时间序列分析预测芬兰人弯曲杆菌病的发病率。

Predicting the incidence of human campylobacteriosis in Finland with time series analysis.

作者信息

Sumi Ayako, Hemilä Harri, Mise Keiji, Kobayashi Nobumichi

机构信息

Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.

出版信息

APMIS. 2009 Aug;117(8):614-22. doi: 10.1111/j.1600-0463.2009.02507.x.

Abstract

Human campylobacteriosis is a common bacterial cause of gastrointestinal infections. In this study, we tested whether spectral analysis based on the maximum entropy method (MEM) is useful in predicting the incidence of campylobacteriosis in five provinces in Finland, which has been accumulating good quality incidence data under the surveillance program for water- and food-borne infections. On the basis of the spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data in the years 2000-2005. The optimum least squares fitting (LSF) curve calculated by using the periodic modes reproduced the underlying variation of the incidence data. We extrapolated the LSF curve to the years 2006 and 2007 and predicted the incidence of campylobacteriosis. Our study suggests that MEM spectral analysis allows us to model temporal variations of the disease incidence with multiple periodic modes much more effectively than using the Fourier model, which has been previously used for modeling seasonally varying incidence data.

摘要

人类弯曲杆菌病是胃肠道感染常见的细菌病因。在本研究中,我们测试了基于最大熵方法(MEM)的频谱分析是否有助于预测芬兰五个省份弯曲杆菌病的发病率,该国在水源性和食源性感染监测计划下积累了高质量的发病率数据。基于频谱分析,我们确定了解释2000 - 2005年发病率数据潜在变化的周期性模式。使用这些周期性模式计算出的最优最小二乘拟合(LSF)曲线再现了发病率数据的潜在变化。我们将LSF曲线外推至2006年和2007年,并预测了弯曲杆菌病的发病率。我们的研究表明,与之前用于模拟季节性变化发病率数据的傅里叶模型相比,MEM频谱分析能让我们更有效地用多种周期性模式对疾病发病率的时间变化进行建模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验