Suppr超能文献

基于神经网络统计判别分析的超声图像纹理分类

Classification of ultrasonic image texture by statistical discriminant analysis of neutral networks.

作者信息

DaPonte J S, Sherman P

机构信息

Computer Science Department, Southern Connecticut State University, New Haven 06515.

出版信息

Comput Med Imaging Graph. 1991 Jan-Feb;15(1):3-9. doi: 10.1016/0895-6111(91)90100-a.

Abstract

In this paper the ability of two common statistical discriminant analysis procedures are compared with two commercial neural network software packages. The major objective of this study was to determine which of the procedures could best discriminate between normal and abnormal ultrasonic liver textures. The same set of features were input into both statistical discriminant analysis procedures and both neural network models. Preliminary results have found the restricted Coulomb Energy (RCE) neural network model to have a testing accuracy of 90.6% which is approximately 10% better than any of the other techniques investigated.

摘要

在本文中,将两种常见的统计判别分析程序的能力与两个商业神经网络软件包进行了比较。本研究的主要目的是确定哪种程序能够最好地区分正常和异常的肝脏超声纹理。相同的特征集被输入到两个统计判别分析程序和两个神经网络模型中。初步结果发现,受限库仑能量(RCE)神经网络模型的测试准确率为90.6%,比所研究的任何其他技术高出约10%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验