Suppr超能文献

神经网络在通过定量超声对弥漫性肝病进行分类中的应用。

Application of neural networks for the classification of diffuse liver disease by quantitative echography.

作者信息

Gebbinck M S, Verhoeven J T, Thijssen J M, Schouten T E

机构信息

Biophysics Laboratory, University Hospital Nijmegen, The Netherlands.

出版信息

Ultrason Imaging. 1993 Jul;15(3):205-17. doi: 10.1177/016173469301500302.

Abstract

Three different methods were investigated to determine their ability to detect and classify various categories of diffuse liver disease. A statistical method, i.e., discriminant analysis, a supervised neural network called backpropagation and a nonsupervised, self-organizing feature map were examined. The investigation was performed on the basis of a previously selected set of acoustic and image texture parameters. The limited number of patients was successfully extended by generating additional but independent data with identical statistical properties. The generated data were used for training and test sets. The final test was made with the original patient data as a validation set. It is concluded that neural networks are an attractive alternative to traditional statistical techniques when dealing with medical detection and classification tasks. Moreover, the use of generated data for training the networks and the discriminant classifier has been shown to be justified and profitable.

摘要

研究了三种不同的方法来确定它们检测和分类各类弥漫性肝病的能力。研究了一种统计方法,即判别分析,一种名为反向传播的监督神经网络和一种无监督的自组织特征映射。该研究是基于先前选择的一组声学和图像纹理参数进行的。通过生成具有相同统计特性的额外但独立的数据,成功扩展了有限数量的患者。生成的数据用于训练集和测试集。最终测试以原始患者数据作为验证集进行。得出的结论是,在处理医学检测和分类任务时,神经网络是传统统计技术的一个有吸引力的替代方案。此外,已证明使用生成的数据来训练网络和判别分类器是合理且有益的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验