Brainerd Elizabeth L, Baier David B, Gatesy Stephen M, Hedrick Tyson L, Metzger Keith A, Gilbert Susannah L, Crisco Joseph J
Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
J Exp Zool A Ecol Genet Physiol. 2010 Jun 1;313(5):262-79. doi: 10.1002/jez.589.
X-Ray Reconstruction of Moving Morphology (XROMM) comprises a set of 3D X-ray motion analysis techniques that merge motion data from in vivo X-ray videos with skeletal morphology data from bone scans into precise and accurate animations of 3D bones moving in 3D space. XROMM methods include: (1) manual alignment (registration) of bone models to video sequences, i.e., Scientific Rotoscoping; (2) computer vision-based autoregistration of bone models to biplanar X-ray videos; and (3) marker-based registration of bone models to biplanar X-ray videos. Here, we describe a novel set of X-ray hardware, software, and workflows for marker-based XROMM. Refurbished C-arm fluoroscopes retrofitted with high-speed video cameras offer a relatively inexpensive X-ray hardware solution for comparative biomechanics research. Precision for our biplanar C-arm hardware and analysis software, measured as the standard deviation of pairwise distances between 1 mm tantalum markers embedded in rigid objects, was found to be +/-0.046 mm under optimal conditions and +/-0.084 mm under actual in vivo recording conditions. Mean error in measurement of a known distance between two beads was within the 0.01 mm fabrication tolerance of the test object, and mean absolute error was 0.037 mm. Animating 3D bone models from sets of marker positions (XROMM animation) makes it possible to study skeletal kinematics in the context of detailed bone morphology. The biplanar fluoroscopy hardware and computational methods described here should make XROMM an accessible and useful addition to the available technologies for studying the form, function, and evolution of vertebrate animals.
移动形态的X射线重建(XROMM)包括一组三维X射线运动分析技术,这些技术将体内X射线视频中的运动数据与骨扫描的骨骼形态数据合并,生成三维骨骼在三维空间中移动的精确动画。XROMM方法包括:(1)将骨骼模型手动对齐(配准)到视频序列,即科学的逐帧描绘;(2)基于计算机视觉将骨骼模型自动配准到双平面X射线视频;以及(3)基于标记将骨骼模型配准到双平面X射线视频。在此,我们描述了一套用于基于标记的XROMM的新型X射线硬件、软件和工作流程。配备高速摄像机的翻新C型臂荧光透视仪为比较生物力学研究提供了一种相对廉价的X射线硬件解决方案。我们的双平面C型臂硬件和分析软件的精度,以嵌入刚性物体中的1毫米钽标记之间成对距离的标准偏差衡量,在最佳条件下为±0.046毫米,在实际体内记录条件下为±0.084毫米。测量两个珠子之间已知距离的平均误差在测试物体的0.01毫米制造公差范围内,平均绝对误差为0.037毫米。根据标记位置集为三维骨骼模型制作动画(XROMM动画)使得在详细骨骼形态的背景下研究骨骼运动学成为可能。这里描述的双平面荧光透视硬件和计算方法应使XROMM成为研究脊椎动物的形态、功能和进化的现有技术中一种易于使用且有用的补充。